
大数据助平安城市智慧转型
随着物联网技术的发展,平安城市正从传统安防到平安城市大安防体系、数字城市、智慧城市方向发展。安防视频及相关数据量正以惊人的速度增长。如能对这些海量数据进行全面分析和挖掘,将有可能解决城镇化建设中的诸多问题。
中国的城镇化建设进程正在不断推进。到2020年,将有60%的人口居住在城镇,相当于每年约有1—2千万的人口进入城镇。作为地方政府推进这一进程的重要途径,平安城市建设近年来备受瞩目。平安城市正从传统安防到平安城市大安防体系、数字城市、智慧城市方向发展。展望未来,平安城市将与城市应急、数字城管、智能建筑、工业与自动化控制等各个方面融合,全面服务居民生活。
应该说,平安城市是现代城市信息化建设的第一步,随着物联网技术的发展,平安城市将会在此基础上进一步向数字城市、智慧城市发展。
随着物联网技术的发展,平安城市建设从传统安防转向智慧城市建设,将使安防市场涌现巨大商机和广阔发展空间,高清摄像机和智能化监控设备需求持续升温,尤其智能交通成为新时期政府投资的重点领域,未来几年视频监控行业都将保持高景气度。
“在此过程中,以视频监控为核心的安防产业已从原先较为单一的视频采集和存储向更标准化的端到端系统解决方案转型,从芯片技术到集成软件的创新也在推动着安防产业向智能化、数字化、高清化和网络化的方向加速发展。”英特尔公司智能系统事业部行业市场总监
Todd
Matsler说。安防视频及相关数据量正以惊人的速度增长。仅以国内一线城市的交通监控为例,每天平均产生0.3PB至6.7PB的视频数据。
面对这些海量数据,如不对其进行智能分析,将是非常笨重的。此外,目前的监控摄像设备用途单一,但如果它们可以和其它传感器的数据融合,将有可能解决城镇化建设中的诸多问题。比如,将摄像设备中有关车流的数据和空气质量传感器中的数据进行相关性分析,我们也许可以通过调整信号灯的时间,优化车辆在路口等待的时间,从而减少排放和污染。
Todd Matsler表示,英特尔的理念是在端到端的安防行业,全面实现数据价值的挖掘。所谓“端到端”,包括前端视频采集、分析,存储以及后端数据中心处理。
今年3月,长春市一辆丰田轿车被盗,随车被盗的还有一名两个多月大的婴儿,案发第二天,失窃车辆才被发现,而被人广泛关注的婴儿已被凶犯杀害。
而事实上,在街道两旁已装有数千个安防摄像设备,但是它们并没能帮助警务人员及时发现被盗车辆及其行进轨迹,最终造成惨案的发生。为什么?因为我们缺少一个端到端的计算架构,使不同摄像设备的关键信息被快速关联起来,从而进行分析。如果在前端,我们可以将目标车辆的特征作为输入参数、作为前端摄像设备的检测特征,并通过智能前端的过滤,从所有的监控点中抽取相应的元数据,然后快速导入大数据系统进行检索和分析,我们极有可能在短时内发现被盗车辆,从而阻止犯罪行为的恶化。同时,这一架构还可节约存储产生的系统成本。
目前,数据分析往往在数据中心执行。Todd Matsler表示,未来将有很大一部分数据的分析转移到前端,以提高实时性和后端处理效率,而最终的数据分析将在端到端的架构中灵活迁徙,使我们同时获得全局的智能以及局部的实时有效性。
以智能交通为例,基于英特尔高性能硬件平台及其软件支持,可将部分预处理类型的数据分析任务放在前端完成,有效地缓解了后端数据挖掘、分析的压力,同时减少了网络传输中的带宽压力。体量大、价值低的非结构化信息在前端分析处理后,形成体量小、价值高的半结构化或结构化信息,进而向后端传输。在数据由前端向后端传输的同时,数据分析和挖掘工作也在进行,得以获取更加客观、全面的交通信息。
通过视频的智能分析,可以对监测区域的所有目标进行智能感知,实现诸如抓拍逆行、闯红灯、车牌识别、车流统计的功能,还能对特定目标进行智能报警,对具有一定行为特征的事件进行预先报警,以及提供事后的查证。视频智能分析并不高深,难点在于如何把它与嵌入式设备整合,从而进行编写、编译、调优,而这正是X86架构的优势所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30