京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云和大数据促进互联网信息消费
在云计算成为基础资源的背景下,基于大数据的互联网信息服务,能够帮助企业和个人更好地预测未来和进行决策,从而成为促进信息消费的主要推动力。例如已有产品开始通过大数据分析互联网信息来判断“网络金融民意”,那么,大数据究竟是如何促进互联网信息服务消费的呢?
一切皆是数据皆可量化
在大数据时代,不仅数字、文本都是数据,甚至身份、位置都是数据,是有价值、有市场的商业数据。
以往,我们讲的数据往往只是数字,因为文本描述是难以进行量化数据分析的。但在大数据时代,不仅数字、文本都是数据,甚至身份、位置都是数据,是有价值、有市场的商业数据。例如,一个学生出现在长江商学院的培训课程,说明他可能有贷款的需要,一个白领出现在托福考试的考场,说明他可能有境外金融或者旅游服务的需要;在积累足够多的样本后,这些身份、位置所反映的行为均可量化为高价值的金融服务数据。这种信息服务直接拉近了金融供求双方的距离,降低了金融市场拓展的成本。如何分析很重要
有些数据是表格化的,数据与项目一一对应,我们说这样的数据是结构化的,便于分析。但在大数据时代,我们获得信息的渠道是多样的,可能是文章下的评论、微博上的一句牢骚等等,这样的数据就很难采用结构化的数据库进行存储分析。而且,相对于小数据和精确性的时代,大数据因为更强调完整性和混杂性,数据分析过程中的损失就变得不再那么重要,只要建立合适的分析模型,就可以获得有价值的数据,比如微软创投加速器的一个企业开发的“股票雷达”,通过它可以收集各类网络上关于股票的预期信息,进而汇聚成为大众群体对某具体金融产品的信心预期,反映“网络金融民意”,让股民能了解市场上更多的真实情况,缓解普遍存在的信息不对称,并为股民做投资决策的时候,提供重要参考。
人们在处理海量的非量化、非结构化信息时,会造成数据的遗失甚至扭曲,往往可以得出不尽相同的结论。美国一家金融服务机构的信用卡部门,通过大数据分析,获得了每季度200%的业务增长。这个项目为每个用户建立了30多个参数进行分析,只为找出当前信用卡欠款,但具备潜在偿还能力的客户。因为数据分析模型的成功,此项目取得了令人满意的效果。在大数据时代,信用记录、社交媒体、搜索引擎等数据信息日趋完备,有待不断创新的数据分析模式进行挖掘。
云让大数据得以普及
在云计算成为基础资源的今天,信息存储不再是瓶颈,更多数据挖掘项目可以得到施展。
数据不是今天才有,也不是今天才“大”起来。但过去一些数据挖掘研究虽然有了思路,却限于存储、计算资源等硬件条件无法实行。2006年前后,我国某大银行,希望通过关联交易数据的分析提高他们对公信贷业务的精确度,估计信息量是20PB的级别。当时一家银行历年的贷款报告,财务发展分析报告、图表、基本财务信息、公司信息加起来也就100G,相比之下,20PB可谓天文数字,项目因为成本而未能良好执行。但在云计算成为基础资源的今天,信息存储已经不再是大数据分析的瓶颈,一些原有的数据挖掘项目可以得到施展,帮助行业开辟业务新天地。
例如,还有一家名为91金融超市的公司在微软Windows
Azure云平台上将金融中介服务进行互联网化,打通了金融机构和个人消费者之间的通路,并通过对个人数据和需求的分析,将最合适的金融产品推送给个人,或者将个人需求精准匹配给相应的机构。这一模式被资本市场、机构和消费者高度看好,他们也因此刚刚拿到了6000万元的风险投资。
在云和大数据的支持下,将有越来越多的新型信息服务模式得以建立。大数据信息服务影响和促进社会各个领域,基于金融领域的精准信息服务创新,只是最容易被人们理解的应用领域之一。随着云和大数据技术的日益普及和深化,各个行业都将迎来信息消费的黄金时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27