京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据其实没那么有用,但是炒作它的人确实是都赚钱了
正在好几条战线上对技术巨头发起挑战的欧盟竞争委员会专员Margrethe Vestager又开辟了一条新的:“大数据”。
她在接受《华尔街日报》采访中把数据拎出来作为一项重要的竞争优势,称英国在反垄断审查和调查中予以更认真的考虑。不幸的是,如果担心大数据引发隐私问题还是合理,如果对基本上没有根据的大数据炒作过于买账的话,就是担心过头了。
她告诉《华尔街日报》说:“在一些领域,这些数据是非常有价值的。它们可以形成市场壁垒——让拥有数据的一方获得别人所没有的巨大商业机会。”她还补充说Google、Facebook甚至德国车企宝马公司等,因为它们正在积累的数据以及这些数据帮助它们抵达客户和降低成本,会对竞争对手形成不公平优势。
这一观点是这样一个概念的延伸。大家普遍认为,我们是用自己的数据来换取免费服务,而提供服务的公司可以很轻易地将这些数据转化成金钱——比方说,通过广告的精准定向投放来商业化。但事实是这种炒作转换为现金要比实际数据转化为金钱更加容易。
2011年,麦肯锡推出了一份报告,报告炒作了大数据的商业潜能,预测称它将成为“竞争的关键基础”。这家公司说如果零售商能够利用好它的潜能的话,可以将营业利润提高60%。这会是微定向(microtargeting)和“库存和定价自动对线上线下销售做出实时调整”的直接结果。
2016年,麦肯锡又弄了一份报告来调整上次的预测,称“因为缺乏分析人才”以及“企业内部的数据烟囱”,美国零售商只实现了大数据相关潜能的30%到40%。然而即便是这样的评价仍然是高估的论断。美国零售业今天的营业利润比2011年的时候还低了一点。哪怕是被麦肯锡在2016年报告中称赞为大数据技术早期采用者的沃尔玛,最近几年在营业利润方面也没有任何像样的增长。
没有大数据驱动出来的繁荣
沃尔玛最近几年的营业利润并没有反映出数据驱动技术带来了更大的回报
如果Google和Facebook使用的大数据真的帮助了制造商和零售商的话,那么在这些公司很强势的国家里零售收入应该会出现显著增长才对。但这种情况并没有发生。Google和Facebook倒是变得越来越大,但美国的零售销售却已经停滞,并且低于历史水平。
数据驱动革命?没听说过
美国零售销售复合年增长情况(剔除季节性因素后)
对于大数据炒作这个当然不是一个完全科学的论断。其他因素,比如经济加剧、经济条件等也会连累到数据驱动给零售利润和规模带来的增长。所以在缺乏对大数据对公司表现影响的最近研究的情况下,说这个结论不可知也许是谨慎的做法。从宏观层面来说,并没有这种效应存在的迹象——而且也没有明显受益的公司,除了那些专门销售其大数据知识的公司,比如Google和Facebook。
从直观上来看,分析客户数据显然应该能带来商业优势。2014年麦肯锡资助的一项研究发现,零售商一般都同意这一点。然而,这并不意味着我们今天所熟知的大数据——有关个人上网习惯、可追溯几年的购物历史情况、社交网络文章和互动的信息——可以给试图利用它的公司带来任何的优势。这种信息的一个主要问题是“垃圾进去垃圾出来”。此外,任何曾经买过比方说钱包的人事后都会被钱包广告狂轰滥炸几个星期,这说明基于历史的定向营销其实没太大意义。Google和Facebook的定向广告并不比传统媒体历史悠久的针对特定类型内容受众的宽松定向广告产品好多少。
当然,知识仍然是力量。有朝一日那些公司也许能收集到有关我们的足够多的有用信息,然后用到显著提升销售上。找到这种办法的公司将获得理所应得的竞争优势,这种优势像Vestager这样的监管者未必就能化解得了。我怀疑这需要客户和数据收集者进行合作:没有这种合作的话,会有太多的大数据是错的、不充分的或者根本就是无用的。比方说,如果大家放弃信息自愿性,就能拿到一点广告收入或者产品的折扣的话——就没有理由去限制企业拿这些数据可以做什么。
不过,在目前的情况下,使用蛇油并不能给你带来竞争优势。它只会让卖蛇油的人富得流油。监管者感兴趣的应该是这种企业——但反垄断者未必需要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27