京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据和人工智能理性评估特色小镇
目前,我国特色小镇建设在全国如火如荼,但各地受地域经济、文化等因素影响,特色小镇发展参差不齐。住建部分别于2016年10月和2017年7月公布了第一批和第二批中国特色小镇名单共403个小镇。这些特色小镇是在各地推荐的基础上,经专家评审得出。这种地方推荐、专家评审的人工决策方法要耗费大量的人力资源,难以对全国数目众多的小镇逐一评估。而且小镇的经济、交通、生态(例如年均PM2.5)等等指数经常变化,现有的决策模式很难对小镇做动态、经常性的评估。
现代心理学和认知学发现传统的、依赖于人的直觉和经验做决策是不可靠的。人工智能模型从数据出发,通过机器学习,能解决人工决策的偏差。利用人工智能模型来做特色小镇的评估需要大量的学习样本。杭州景理文化科技发展有限公司用大数据和人工智能技术开发了一套景观决策支持系统,我们使用该系统评选出高质量的特色小镇。
我们从全国选取了3,700个小镇,主要来源于住建部等7部委于2014年7月公布的《住房城乡建设部等部门关于公布全国重点镇名单的通知》。对于这些小镇,我们收集了69个指标,涵盖气候、地貌、经济、生态等等方面。这些指标的选取主要是考虑到它们和特色小镇的质量相关,同时这些数据也相对容易收集。
根据它们是否被列入住建部公布的第一、二批特色小镇名单,我们对这些小镇做了标记。被列入住建部名单上的是高质量特色小镇,由于它们是通过地方推荐、专家评审而来,它们的入选包涵着丰富的当地经验和专家知识 。
人工智能模型通过对这些小镇的学习,能够发现小镇气候、地貌、经济、生态等等指标和高质量特色小镇的相关性,从而计算出特色小镇质量指数。实际上,人工智能模型是在学习住建部的特色小镇名单里隐含的丰富信息,但这种学习并不是简单地复制专家的判断,而是以数据为基础,经过综合后把学到的具有统计显著性的内容固化到模型里。我们发现这个评估非常新颖、有现实意义,同时也符合经验和直觉的判断。
我们认为数据、人工智能模型和应用应该形成一个闭环。用数据训练人工智能模型,人工智能模型的输出支持应用,再根据从实际应用中得到的反馈来更新、增强数据。通过这种方式,我们的人工智能模型可以不断地迭代提升。相对于这种用数据来训练模型的方法,传统的、基于专家先验知识的评分体系是主观和静态的,其输出和现实的偏差不能有效地反馈回系统并做出调节,难以适应环境的动态变化。
事实上,利用大数据和人工智能做决策支持是全球各个行业的趋势。例如,在北美银行、保险业等等传统行业已经广泛地采用人工智能模型。特色小镇质量评估是我们的第一个尝试。而此前召开的中央经济工作会议明确指出要“引导特色小镇健康发展”,利用大数据和人工智能对特色小镇进行理性评估将有助于我国特色小镇的健康发展。
同样与特色小镇密切相关的文化旅游涉及众多的动态变化因素,对传统的专家决策方式提出挑战。“数据驱动决策”的人工智能模型将成为关键的工具。从智能手机、社交网络、物联网等等渠道采集的数据为人工智能模型提供“燃料”,通过数据训练的模型为文旅产品的设计和营销提供客观、及时的决策支持。继特色小镇之后,杭州景理的智能决策支持系统将会在文化旅游产业发挥重要作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27