京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要充分利用,但更要保护用户隐私
全球进入移动互联网时代后,一个巨大进步是一切活动都在往移动互联网这个舞台上转移。所有社会活动、金融交易等都在网络上留下了痕迹或者说有迹可循。由此带来的进步是革命性、历史性和颠覆性的。
通过对人们在网络上留下的印记进行采集、挖掘、提炼与分析,可以分析出背后许多经济金融文化等有巨大价值的东西。思想支配行动,行动又反映思想。从网络上的留印行动中挖掘分析后就可以基本得出其思想所在,从网络上对一个主体各个方面留痕进行大挖掘、大计算、大分析基本就可以摸清楚预测出来这个主体想要什么,需求何在?这就可以分类施策、细分客户、精准营销。这个商业价值是无限的。
此前,马云曾讲过,大数据、云计算诞生以后,经济或可以进入到计划经济体制里。计划经济与市场经济都是配置资源的手段。计划经济之所以比市场经济在效率等方面低、弊端多,不在于计划经济体制本身,而在于没有技术等手段与能力来实现计划经济的高效性与准确性。现在有了网络,有了网上大数据的积累,有了云计算,或给计划经济以重新复活的机会,给了计划经济体制优越性以证明的机会。插上大数据、云计算翅膀的计划经济或比市场经济更加高效,更加精准,对市场的周期性破坏或就此消失。
这就是所说的大数据是一座大金库的原因。不过,这个大金库要充分挖掘与发挥出来的话,一个大前提是要对大数据进行充分采集、挖掘、整理、甄别、分类、分析等。这个大数据中包括你我他几乎全部在网络上的百姓民众消费者。也就是说,每一个在网络上留下印记即数据的你我他都是被分析的对象。这就牵扯到另一个问题:隐私保护问题。
近期,用户在查阅自己的支付宝年度账单时默认勾选“我同意《芝麻服务协议》”这件事引起一阵波澜,蚂蚁金服也回应道歉了。无论处于什么好意,默认勾选“同意”肯定是不合适的。不过,从这件事中的一些争论反应看,确实存在着一些对大数据在采集使用与隐私保护上的较大偏差甚至是糊涂认识,需要以理性的思考予以梳理厘清。
只要你在网络上留下了印记即数据基本上没有隐私可言。即使线下交易也基本如此。例如:过去你到银行办理存款贷款汇款,你到房管所办理房子登记过户,你到派出所办理户口入户迁移,你办理入学入托上大学等等都要登记家庭、身份证、电话等基本情况与信息。现在在网络上同样如此。只要存在这些情况,你的信息或者隐私就已经裸露出来了。
这里一个关键问题必须甄别清楚,每一个人在网络积累的大数据不让采集挖掘分析使用可能是做不到的。关键在于如何使用?在于使用后一定要为客户的隐私以及普通信息数据保密。保密,是问题的关键所在。只要有交易,就一定要使用你的数据。比如,你有贷款信用需求,这个金融交易一定要充分使用你的数据信息的。关键在于使用以后,不能泄露给第三方。所谓的保护隐私数据,主要的问题就在这里。
非金融信用业务也有保护数据信息隐私问题。你去一个网站注册、你想使用共享单车都需要注册相关信息数据的。注册这些数据信息以后,你不能说不让网站等挖掘使用你的数据信息,注册时也等于是一种交易,除非你不注册。关键问题还在于,网站、共享单车等使用客户数据后,一定要为客户保密。
这里面牵扯第三方使用数据如何办的问题。我个人认为,牵扯所有经济体的金融信用数据问题,各大平台包括央行在内都可以共享信用等级数据。目的在于形成一种“有信走遍天下,无信寸步难行”的社会氛围与高压态势,使有信用者得以提倡褒扬,无信用者如过街老鼠人人喊打。全社会形成:信用贵如金子,无信耻辱透顶,这才能形成信用的正向激励机制。
第三方使用其他数据,网站等平台应该通过协议约束征得被采集人的同意。同样,必须有约束条款,第三方也必须为客户数据信息保密。
总之,大数据这座金矿必须充分利用使用与挖掘开采,不能造成大数据资源的闲置和浪费,同时,使用以后关键在于要保护好被采集数据者的数据信息以及隐私。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27