
传统企业转型人工智能 只靠大数据可不行
“即使有大数据支撑,如果不和使用场景紧密结合,再高超的科技消费者也不会买账。用户并不关心是否有AI技术,他们更关心的是内容。”
刚过去的一年,人工智能仍是互联网界的首要关键词。就像AlphaGo升级成AlphaZero,无师自通地称霸各种棋类游戏,AI以人类无法预料的速度向未来狂奔,如脱缰野马。中国将在此中扮演何种角色?
2017年7月,国务院印发《新一代人工智能发展规划》;工信部2017年12月出台《人工智能产业发展三年行动计划》(以下称《计划》),提出力争到2020年,一系列人工智能标志性产品取得重要突破,在若干重点领域形成国际竞争优势。
中国在产业应用层面有优势
2017年,人工智能进步的一个标志是:美国举办8年的图像识别挑战赛ImageNet,正式退出历史舞台。8年前AI识别准确率只有70%多,现在差错仅2.7%,远低于人类的5.1%,竞赛已无意义。而最近的报道显示,中国研发的医疗AI,识别小肿瘤的能力也超过了资深大夫。
迟早将攻占更多人类领地的AI,会在哪个领域先开花散叶?
人工智能公司“第四范式”的创始人和CEO戴文渊告诉科技日报记者,AI应用爆发有5个先决条件:大数据(Big-data)、反馈数据(Response)、算法(Algorithm)、基础设施(Infrastructure)、业务需求(Needs),合称“BRAIN”,凡是满足这5个条件的领域,都有可能在2020年之前实现人工智能的爆发。
“我们也可以看到,《计划》中列举的商业化场景,集中在交通、医疗、图像、语音、家居等领域,也都是这五大先决条件相对比较完备的场景。”戴文渊说。
曾有判断说AI在消费端落地还要5—10年,红杉资本中国合伙人计越却不认为需要那么长时间。“比如今日头条,只要让用户看到想看的内容就好,用户并不关心是否有‘AI技术’。”计越说,“你用网易云音乐吗?你不知不觉中也在享受AI的便捷。到消费端的AI什么时候实现不是靠专家的判断,只要实实在在地解决用户需求,它就会实现。”
红杉资本投资了许多中国AI企业:今日头条、快手、秒拍、京东金融、美团、滴滴、摩拜、大疆……计越说,AI需要跟使用场景紧密结合,否则再高超的科技,消费者也不会买账。
大数据是训练AI的关键。“红杉投资看重的,一是应用场景,一是有自己的数据。”计越以滴滴举例说,滴滴在2015年就成为仅次于淘宝的全球第二大在线交易平台,数据规模是每日200亿次的路径规划请求,因此其AI预测用户目的地准确度超过90%。
对于《计划》中提出的中国将在若干重点领域形成优势,戴文渊极有信心。“在AI领域,基本上是中美竞争的格局,中国在AI产业应用层面还有一定的领先。”戴文渊说,“这是由于人工智能的算法和计算能力都可以通过平台实现,数据成为最大的门槛,巨大的用户数据正是中国的优势。中国是互联网人口大国,中国互联网的发展为我们研究AI准备了条件。”
人工智能与实体经济融合需深化
“中国的发展阶段浓缩了,呈现跳跃式和并行发展,可能给中国创业者带来更多机会。”计越说,在中国结合几个阶段为一体的创新公司多(包括AI),而在美国,IT巨头积累深厚,新兴公司需要找缝隙切入,从这个角度看,中国创业机会更大。
迁移学习被认为是AI领域中国可能赶超美国的一个突破点。戴文渊曾创造了中国最大的机器迁移学习系统“凤巢”,他在迁移学习领域单篇论文引用数世界第三,第四范式首席科学家杨强则是世界第一。
迁移学习是指将知识应用到不同领域的能力,以解决目标领域数据不足的问题。由于解决了小数据应用AI的难题,中国的研究受到Google和Facebook的关注。
《计划》提出人工智能和实体经济的融合需进一步深化。戴文渊说,这需要企业的组织架构调整,将AI嵌入经营管理。戴文渊表示,传统企业生产经营是由人工决策、机器执行;AI的意义正是在于机器决策、机器执行。想要成为未来智能企业,门槛也很高,包括机器学习算法,上亿维的系统架构,更包括认知的层面。
“很多传统企业会说自己有大数据,可以做AI了。其实未必,正确的大数据加正确的机器学习,产出是人工智能,错误的大数据加机器学习,产出的并不是。”戴文渊说,企业人工智能核心系统,将是继交易核心系统、互联网核心系统之后,企业的又一个核心。
《计划》特别强调“支持人工智能企业与金融机构加强对接合作”。戴文渊对此评论,金融领域因为拥有足够的数据和计算资源,使其成为AI目前最理想的落地产业之一。“机器已经在金融领域辅助人做大量商业分析与决策。”戴文渊说,“以我们与某银行解决交易欺诈问题的合作为例,机器写出的欺诈交易规则数达到25亿条,资深业务专家写出的规则数最多1000条。最终,机器在欺诈预判准确率较人提升了7倍。”
联想集团董事长杨元庆也表示看好中国AI发展。“未来商业比拼一定是业务模式的比拼,而业务模式的智能化程度决定企业竞争力。”杨元庆说,“如果能更多强调数字经济和智能化,那未来我国企业会比其他国家领先一步。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
35岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13