京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统企业转型人工智能 只靠大数据可不行
“即使有大数据支撑,如果不和使用场景紧密结合,再高超的科技消费者也不会买账。用户并不关心是否有AI技术,他们更关心的是内容。”
刚过去的一年,人工智能仍是互联网界的首要关键词。就像AlphaGo升级成AlphaZero,无师自通地称霸各种棋类游戏,AI以人类无法预料的速度向未来狂奔,如脱缰野马。中国将在此中扮演何种角色?
2017年7月,国务院印发《新一代人工智能发展规划》;工信部2017年12月出台《人工智能产业发展三年行动计划》(以下称《计划》),提出力争到2020年,一系列人工智能标志性产品取得重要突破,在若干重点领域形成国际竞争优势。
中国在产业应用层面有优势
2017年,人工智能进步的一个标志是:美国举办8年的图像识别挑战赛ImageNet,正式退出历史舞台。8年前AI识别准确率只有70%多,现在差错仅2.7%,远低于人类的5.1%,竞赛已无意义。而最近的报道显示,中国研发的医疗AI,识别小肿瘤的能力也超过了资深大夫。
迟早将攻占更多人类领地的AI,会在哪个领域先开花散叶?
人工智能公司“第四范式”的创始人和CEO戴文渊告诉科技日报记者,AI应用爆发有5个先决条件:大数据(Big-data)、反馈数据(Response)、算法(Algorithm)、基础设施(Infrastructure)、业务需求(Needs),合称“BRAIN”,凡是满足这5个条件的领域,都有可能在2020年之前实现人工智能的爆发。
“我们也可以看到,《计划》中列举的商业化场景,集中在交通、医疗、图像、语音、家居等领域,也都是这五大先决条件相对比较完备的场景。”戴文渊说。
曾有判断说AI在消费端落地还要5—10年,红杉资本中国合伙人计越却不认为需要那么长时间。“比如今日头条,只要让用户看到想看的内容就好,用户并不关心是否有‘AI技术’。”计越说,“你用网易云音乐吗?你不知不觉中也在享受AI的便捷。到消费端的AI什么时候实现不是靠专家的判断,只要实实在在地解决用户需求,它就会实现。”
红杉资本投资了许多中国AI企业:今日头条、快手、秒拍、京东金融、美团、滴滴、摩拜、大疆……计越说,AI需要跟使用场景紧密结合,否则再高超的科技,消费者也不会买账。
大数据是训练AI的关键。“红杉投资看重的,一是应用场景,一是有自己的数据。”计越以滴滴举例说,滴滴在2015年就成为仅次于淘宝的全球第二大在线交易平台,数据规模是每日200亿次的路径规划请求,因此其AI预测用户目的地准确度超过90%。
对于《计划》中提出的中国将在若干重点领域形成优势,戴文渊极有信心。“在AI领域,基本上是中美竞争的格局,中国在AI产业应用层面还有一定的领先。”戴文渊说,“这是由于人工智能的算法和计算能力都可以通过平台实现,数据成为最大的门槛,巨大的用户数据正是中国的优势。中国是互联网人口大国,中国互联网的发展为我们研究AI准备了条件。”
人工智能与实体经济融合需深化
“中国的发展阶段浓缩了,呈现跳跃式和并行发展,可能给中国创业者带来更多机会。”计越说,在中国结合几个阶段为一体的创新公司多(包括AI),而在美国,IT巨头积累深厚,新兴公司需要找缝隙切入,从这个角度看,中国创业机会更大。
迁移学习被认为是AI领域中国可能赶超美国的一个突破点。戴文渊曾创造了中国最大的机器迁移学习系统“凤巢”,他在迁移学习领域单篇论文引用数世界第三,第四范式首席科学家杨强则是世界第一。
迁移学习是指将知识应用到不同领域的能力,以解决目标领域数据不足的问题。由于解决了小数据应用AI的难题,中国的研究受到Google和Facebook的关注。
《计划》提出人工智能和实体经济的融合需进一步深化。戴文渊说,这需要企业的组织架构调整,将AI嵌入经营管理。戴文渊表示,传统企业生产经营是由人工决策、机器执行;AI的意义正是在于机器决策、机器执行。想要成为未来智能企业,门槛也很高,包括机器学习算法,上亿维的系统架构,更包括认知的层面。
“很多传统企业会说自己有大数据,可以做AI了。其实未必,正确的大数据加正确的机器学习,产出是人工智能,错误的大数据加机器学习,产出的并不是。”戴文渊说,企业人工智能核心系统,将是继交易核心系统、互联网核心系统之后,企业的又一个核心。
《计划》特别强调“支持人工智能企业与金融机构加强对接合作”。戴文渊对此评论,金融领域因为拥有足够的数据和计算资源,使其成为AI目前最理想的落地产业之一。“机器已经在金融领域辅助人做大量商业分析与决策。”戴文渊说,“以我们与某银行解决交易欺诈问题的合作为例,机器写出的欺诈交易规则数达到25亿条,资深业务专家写出的规则数最多1000条。最终,机器在欺诈预判准确率较人提升了7倍。”
联想集团董事长杨元庆也表示看好中国AI发展。“未来商业比拼一定是业务模式的比拼,而业务模式的智能化程度决定企业竞争力。”杨元庆说,“如果能更多强调数字经济和智能化,那未来我国企业会比其他国家领先一步。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27