
健康大数据产业重构“方法论”
“2015年,‘互联网+’和大数据成为国家战略,当一门科学成为国家战略的时候,我们总有好奇心研究一下,大数据到底帮我们解决了哪些实际问题?”在近日召开的2017大数据发展促进委员会年会上,中软国际数据服务线咨询服务总监陈涛叩响了大数据从业者的心头之问。
在陈涛看来,互联网帮人们解决了连接的问题,而连接实现了数据的在线流动,“数据的在线流动则提供了很多不能直接感受到和看到的信息,它加快了我们认知这个世界的速度。”
但在健康大数据领域,这种“流动性的魅力”似乎打了折扣。中国疾病预防控制中心慢病中心主任助理蒋炜坦言,“医疗健康这个行业一直都没有跟数据分开过,但是近几年大数据的发展,反而让医疗行业在大数据面前显得比较茫然。”
这是为什么?“大数据想要打破我们原来采用抽样手段通过整体数据来反映健康和医疗全貌的传统。”蒋炜道出了医疗大数据近年来发展中遇到的困惑,在这种情况下,旧的“数据方法论”难以为继,而新的“健康大数据应用体系”尚未成熟,健康大数据产业如何打破僵局?
严重的数据“孤岛”问题
所谓健康大数据,是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的健康数据的集合,蒋炜介绍道。
“健康大数据构架中数据信息的来源渠道、数据信息种类和大数据库的建设与常规大数据是相同的。从数据信息的来源渠道看,很多健康大数据来源于电子病例、居民健康档案、国家临床中心的相关数据、公共卫生及物联网数据库等。”蒋炜认为,正是这种数据种类的庞杂造成了健康大数据的复杂性,甚至成为目前整个健康大数据发展的瓶颈,而这种瓶颈在海量数据收集之后更加凸显。
蒋炜把问题归结为三个方面:数据“孤岛”现象;数据标准不统一;大数据技术未能有效利用,“从2010年左右医疗行业提出大数据至今,一直都没有很好地解决”。
目前医疗大数据的孤岛现象非常严重,“横向来讲,所有的医院都有自己的数据,我们力推医院数据打通,但是将近20年了一直没有达成成果”。蒋炜分析,纵向来讲,由于个人健康信息分为很多类型,从国家层面收集信息就意味着从上到下按不同的类型在地方做不同的数据平台,“各套纵向体系之间的信息没有形成很好的互联互通,大数据很难得以应用,而且造成很多数据资源的浪费”。
此外,蒋炜还表示,在一些信息化水平较高的地区,比如东部沿海地区,或由于企业自身原因,或受制于当时的基础条件,每个地区在建设信息化平台时的标准不统一,当多元数据类型归集于同一数据库时,从清洗到达到可预算标准的过程需要消耗巨大的工作量。
业务导向的价值变现
针对大数据分散、总体价值难以变现的问题,陈涛给出了自己的看法。他表示,就目前而言,“大数据还没有厉害到无所不能的程度”。大数据解决的是相关性,并不能解决因果性的问题。他举了个例子,“如果来分析北京交通的拥堵情况,数据能够帮助我们找到很多相关的因素,比如道路建设情况、地铁路线、公交路线设计等。但是数据并没有告诉我们这些因素的成因,以及我们如何利用这些因素来解决交通拥堵的问题,最终数据还需要人来处理加工,从而支持决策的作出。”
陈涛认为,基于这种理解,可以梳理出数据的一些独有特性:业务附着性、真实性、价值不确定性及可复制性。
“数据从业务中来,最终又反馈给业务,支撑业务的改进和创新。大数据应用实际上要做的一件很基础的事情就是先要树立业务及相关的业务流程。”陈涛表示,“其次,数据可以被当成一种实证方法,既然是实证方法,就必须要真实,虚假数据毫无疑义。”但陈涛也不讳言具体实践中存在的掣肘,“靠数据本身以及数据所存在的IT信息系统并不能保证信息的真实性,因为数据和人的活动是紧密关联的,保证数据的真实性一定要人为制定很多流程制度”。
谈及数据资产时,很多人会关注,既然数据是资产,是不是可以交易、变现或者“卖钱”?陈涛表示,数据和一般性的商品之间还是有很多区别的,一是数据归属权问题,二是“数据的角度”。陈涛所谓的数据的角度,即“它是不是可以以等价交换的方式来支撑”。陈涛解释道,“比如手机上的位置信息,它是数据。对于滴滴打车和外卖公司来讲,它们可以根据这个数据为我提供服务;对于公安部门来讲,这个信息可以帮他们快速找到想找的人,但同样的数据对于其他人可能毫无疑义。数据根据其角色不同、场景不同、目的不同,我们很难认为它的价值像商品一样具有等价交换价值的唯一性。”
此外,数据的可复制性和流动性也是其特性之一,陈涛说:“如果有一天我们发现数据真的成为资产了,真的可以变现的时候,安全非常重要。”
基于这四个特性,大数据应用其实涉及到一整套完整的方法论。具体到医疗健康大数据行业,其应用价值的体现也要遵循这样的路径。
建设规范化交互平台
事实上,经过一系列探索之后,健康大数据的应用之路开始逐渐变得清晰。在这个过程中,全球智能穿戴设备已经突破1亿件,我国目前拥有移动医疗用户2.93亿。正如蒋炜所言,“大家都迫切希望利用移动技术得到医疗健康服务”,移动医疗终端为健康大数据的采集和处理带来了新的思路。
可穿戴设备能实现诸多人体生命特征相关数据的采集和连续采集。通过大数据、云计算、物联网等技术应用,实时采集大量的用户健康数据信息和行为习惯,已经成为智慧医疗获取信息的重要途径。蒋炜表示,这些数据有望与电子病例、公共卫生大数据进行有效衔接,加以人工智能分析,从而推进覆盖全周期的预防、治疗、康复、保健的一体化健康服务发展模式,重构健康产业生态链。
尽管可穿戴设备发展蓬勃,但蒋炜认为目前依然存在数据采集单一导致的健康数据分析、健康服务提供不精确和行业数据标准不统一导致的数据难以共享的问题。“哪怕是同一智能穿戴设备,根据厂商自己的利益和价值取向,设备的数据标准也不一样,当数据真正拿来利用的时候,往往得不到医疗机构的认可。”蒋炜说,“对于健康数据来讲,它的保鲜期很短。”
“从整个行业来讲,需要一个规范化的平台。”蒋炜认为,这个平台要有两大功能,一个是汇总不同智能硬件的健康数据,集合成用户的整体运动健康数据电子档案,为医疗数据接入、慢病管理等提供可操作的健康数据依据;二是将同一用户多维度的排重数据,反向传输给智能硬件厂家,用来精确算法,优化产品,从而形成用户健康信息闭环。基于此,中国疾病预防控制中心和中国信息通信研究院标准所正在共同探索建立健康管理信息交互平台。
为什么要做这个平台?蒋炜表示,首先,针对数据来源的问题,力图使用平台去衡量、支持可穿戴健康设备采集数据的质量标准,开展健康服务评估。其次,融合各个采集设备的数据孤岛,实现数据共享,通过大数据算法提高健康医疗服务准确性。再次,面对大量的运动健康、身体指标、医疗信息等数据,提供技术、服务、用户等行业交流平台,推动我国智能健康医疗大数据的发展,实现移动医疗健康大数据的真正价值。
蒋炜最后讲述了平台建设的时间表,“2017年底一期试运行,2018年正式发布,预计2018年底实现300家移动健康设备平台接入”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28