京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据+人工智能”助力精准诊疗实现
设想有一天,边远地区的病人在家门口看病,就能得到全国互认的智能检测结果;机器人医生可以根据CT片子给出准确的诊断意见……随着大数据、人工智能、互联技术等发展,以及健康医疗大数据应用和平台建设,这些都可能成为人们日常的生活体验。
近日,北京大学肿瘤医院医学影像科副主任崔湧在接受新华网采访时表示,国内外对于“大数据+人工智能”模式应用在医学临床的研究正在逐步深入,计算机对某些疾病的影像诊断水平已能达到专家水准,未来或为实现精准诊疗、保障大众健康带来突破性进展。
计算机对某些疾病的影像诊断已达专家水准
“医学影像学和其他临床学科一样,是基于多年临床经验和研究结果逐渐发展起来的,其知识积累就是依赖于大数据。”崔湧表示,由于不同年代、不同医生的研究方法不一样,人用肉眼能观察到的细节较为有限等原因,影像诊断结果目前还不能做到百分之百的准确。
“同样是判断一张CT片上的结节是什么病,普通医生可能分析出结节的几个特点,资深专家也许能看出十几个特点,而应用计算机图形分析,比如目前国际上流行的影像组学分析,可以发现结节的上千个特点,大大提高了对病变分析的深度。”崔湧指出,在这几千个特点中,哪些是特别重要的,起到决定性作用的,还需要大量病例来证实。其中的分析过程又涉及到人工智能机器学习的应用。“通过人工智能来分析、学习医学影像的特点,再与大量临床数据结合,就有可能在短时间内完成靠人工需要进行几年、十几年的学习认识过程,迅速提升医生的诊断水平。”他说。
据了解,国内外已有研究显示,应用计算机图像分析加上人工智能学习,对一些疾病的影像诊断水平已能达到专家水平。崔湧表示,这对于提升基层医疗服务水平、助推分级诊疗将具有重大意义。“机器学习的知识经验可以无损地传播复制,从一台电脑拷贝到另一台电脑。在理想状态下,只要应用同一套系统,老百姓无论在什么级别的医院看病、找哪个医生看病,都将得到专家级的诊断。”同时他也坦言,由于临床疾病病种众多,目前“大数据+人工智能”在影像诊断领域的研究仍处于起步阶段,实际应用于临床仍任重道远。
优质的大数据是改善健康医疗服务的关键
促进和规范健康医疗大数据应用发展是国家大数据战略布局的重要组成部分,而发展健康医疗大数据离不开各大医疗机构的努力探索、积极参与。“医疗大数据应用发展的关键是什么?是数据的质。换句话说,是数据的真实性、准确性和规范性。”崔湧说。
他介绍,在北大肿瘤医院影像科,具体到患者该在哪个时间段接受CT检查都有详细规定,只有这样才能准确判断病人的治疗效果。“设想我们治疗了1000个肿瘤患者,每个患者都规范用药、检查,那就能根据这1000个患者的数据来分析药物效果。如果治疗、检查时间和程序等不规范,即使收集了再多数据,得出的结果也不可靠。”崔湧认为,优质的大数据是提升健康医疗服务能力的关键。
在患者的诊疗过程中,医疗数据来源众多,从内科、外科等临床科室,到影像科、检验科等医技科室,都是数据提供不可或缺的环节,该如何保障整体数据的质量?“各科室必须要协同配合。”崔湧称,北大肿瘤医院自2009年起积极参与实施多学科协作组(MDT)诊治方式,并在全国范围内进行推广,其目的就是推进肿瘤诊疗的规范性,确保参与各科室的诊疗行为规范,确保医疗质量,这也为今后研究提供了高质量的数据。
大数据技术将让边疆人民看病更方便
作为影像学领域的专家,崔湧自7月起便被派往拉萨市人民医院进行为期一年的对口援助工作,帮助该院影像科室更好地掌握核磁共振诊断技术。崔湧说,这已经是他在2016年7月、2017年6月两度赴藏后,第三次前往西藏。
“来到西藏,才切实感到不同地区间医疗水平的差异。其中的原因不只是设备的差异,更重要的是人才的差异。”崔湧介绍,近年来由于国家和地方的大力支持,西藏地区的医疗设备水平和内地的差距正在逐步缩小,但医疗人才的培养周期要长得多。
“培养一个医疗专家,没有十几年的专业训练是难以做到的。在这方面,‘大数据+人工智能’模式不受人的学习规律局限,有可能在短时间内完成一个人多年的学习进步过程,培养‘速成专家’,而且可以无限复制,使边远地区具有很多同水平‘专家’。”崔湧认为,未来如果这个模式能广泛应用,对于提升边远地区的医疗水平、改善当地群众健康将发挥巨大作用,但由于“大数据+人工智能”模式目前还处于研究阶段,应用在临床上还需时日,而另一种模式——“远程医疗”,在现阶段更为切实可行。
“对于一些内科疾病患者,远程医疗的作用很大,既可以免除患者的长途奔波,同时也让当地医生在此过程中接受了大专家的临床培训指导,提高了诊疗水平。”崔湧表“目前国家组织医疗人才组团援藏,把内地专家直接派到边疆进行面对面、手把手的互动帮扶,仍是目前最直接、有效的方法,对于增强边疆地区的医疗服务能力、满足当地群众健康需求具有不可替代的意义。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27