
大数据如何有序地“变废为宝”
近年来,数字经济已成为带动经济社会发展的重要动力。无论是利用数据赚钱也好,还是希望做“高大上”的公共服务、社会治理改善也罢,大家都面临一个法律上的问题:如何保护数据?数据的权益归谁所有?本文提出5个观点,供各方思考和讨论。
第一,大数据需要处理。
在大数据时代,任何数据均具有潜在的价值。过去,人们重复利用的数据资源主要是人类观察、思考、创作完成的成果,如文章、文件、论文、著作等。如今,人类可以利用各种机器运行轨迹、人类活动记录、自然界变化观测等信息。过去需要大量观察访谈、调查统计、测量等完成的东西,现在可以借助计算机系统、各种数据采集器快速完成,并通过大数据分析工具实现全样本、自动化处理和分析。过去,没有人在意自己的行为轨迹,也无法记录大量的事件和过程,它们可以说作为“垃圾”被自觉或不自觉地扔掉了。现在,数据技术使人类具有“变废为宝”的能力,大数据技术可以在浩瀚的数据海洋中淘到“宝贝”。
因此,数据正在成为人类可拥有和控制的资源。大数据正在提供新的研究范式,帮助世人重新认识宇宙、物质、生命和社会,并在此基础上带来科技技术、管理决策、社会发展的巨大变革。就此而言,数据利用秩序有望成为未来社会的一大基础秩序。
第二,传统的财产权体系并不适合。
如果说所有权(排他支配权)是构筑物质资源利用秩序的法律工具,那它是否可以移植到数据世界并用来建构数据的利用秩序呢?答案是否定的。所有权是对特定物的排他利用权利体系,而数据的非物质性导致其很难实现排他使用。因此,数据天然地不适合于所有权体系。
第三,在保持数据产品开放性和权益保护上维系平衡。
数据从原生数据到有价值的数据产品需要投入,这不仅仅是劳动投入,而且还包括资本投入。只有当这些投入得到足够的回报时,才有人愿意从事数据的收集、处理和加工,将数据转化为产品或服务。这里面,解决数据产品制作者的激励问题,是数据赋权要解决的核心问题。
一般认为,即便是数据产品,也要保持社会公众对该产品的可接触或可学习的公共属性。由此,数据产品的制作者权利应当包括自己使用和许可他人使用的权利,或者利用数据提供服务的权利,同时有权制止他人出于商业目的而使用相关数据产品的权利。
这种基于对于数据分析加工劳动而取得的数据使用,属于一种新类型财产权,可以称之为数据使用权。区别于传统物权的是,它不是对数据的支配权;区别于传统知识产权的是,它并不要求独创性或创新性。这样,就可以给数据产品制作者实现其收集和加工数据的激励,促进数据产品的生产和流通,满足社会对数据产品的需要。
第四,数据来源方的利益要有保护。
在大数据环境下,一切数据皆有源。当数据来源于个人或者是对个人的描述时,就进入了个人数据(个人信息)范畴。隐私保护是个人数据保护的重要组成部分。在这方面,国际社会关于个人数据使用的总体原则是合法、正当和必要原则,以不侵犯个人尊严或自由等基本权益,尤其是隐私利益为基本限制。同时,个人信息的收集和使用必须尊重个人权利,必须确保个人可干预(更正、删除等)。
除了来源于个人外,企业数据还需要获得其他企业和社会组织的数据。除非这些数据是处于可供他人自由获取的公开状态,否则取得这些数据就需要获得数据实际控制人的同意,而不能够随意抓取、窃取或采取其他非法手段获得。
大数据应用最关键的是取得尽可能大而全的数据,但这一过程必须合法合规,其中最为重要的是尊重和保护个人信息权益。由此,数据利用秩序归根结底是要建立数据来源方(原材料提供者)到收集加工制作方(制作者)再到数据使用方(消费者)有关于数据权利和义务配置秩序。在保护各方权益的前提下,尽量保持数据开放性和流通性,使数据得到社会化的利用,实现数据的真正价值。
第五,数据分享和利用要有激励。
在数据可控制的情形下,要让人们把掌握的数据拿出来分享和利用就需有激励,必须创制数据社会化利用的良性机制和秩序。由于数据本身需要保持一定公共性,赋予任何主体对数据和数据产品的绝对支配权都背离发展理念,因而数据赋权需要坚持信息自由流动。
总之,数据总是处于不断脱离原来主体而流动的过程中。正是因为这样的流动,数据才能产生更多的价值。但与此同时,脱离主体也意味着原主体丧失对数据的控制。因此,既保持数据的自由流动性,又维护每个主体在数据上的利益,是一个有待深入思考的法律难题。一个基本的原则可以明确:创制和维护数据利用秩序是大数据应用的前提,是大数据战略得以实施的根本问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30