
人工智能创造新闻新玩法:为你写 让你看 陪你聊
层出不穷的新概念能否让新闻重焕光芒?人工智能又能给新闻这门“手工业”带来怎样的前景?
想看新闻,聊天吧
“聊”新闻的功能出现在近日推出的“百度新闻”手机APP中。进入“聊新闻”界面后,新闻是以对话体的形式出现的。通过聊天的方式,系统可以较为精准地回答关于新闻要素的提问。例如,记者输入“聂树斌案怎么样了”,系统随即推送出聂树斌被判无罪的消息。然后,通过“快帮我分析一下”“这个我关心”等提问,系统又介绍了聂树斌案的背景和意义。几个回合的“快问快答”下来,新闻的来龙去脉基本呈现了出来。
在信息爆炸的今天,围绕同一新闻事件,往往有海量的新闻报道。由于立场和角度不同,读者往往难以“窥一斑而知全豹”,时常有“乱花渐欲迷人眼”之感。如今,通过人工智能,把相关新闻汇聚,运用自然语言处理技术,把核心信息整理成百字左右的“聊天内容”,可以满足各类读者的需求。
聊新闻背后的“黑科技”是什么?据介绍,百度通过对新闻信息分类并进行结构分析,然后通过信息特征学习等方法,自动为用户提供最核心的信息。
据介绍,“聊”新闻功能砍掉了传统媒体报道中80%的内容。百度新闻与内容生态部总监陈磊说,当下的新闻应用仍然没有解决读者对信息深层次的、精准的需求。当基本事实不能满足需求时,读者可以继续提问,人工智能会继续回答。
“希望通过这样的引导推荐,让读者沿着多个相关事件的重要信息,无限地阅读下去,从而提升他们的阅读深度。”百度自然语言处理部总监徐倩说。
新闻“骨感”,也美也不美
事实上,聊新闻并不是件新鲜事儿。今年2月,数据商业新闻网站Quartz就推出了一款类似的新闻应用。在“聊天”过程中,系统会将新闻的梗概推送给读者,读者可以根据兴趣选择是否深入了解。此后,美国传统媒体《华尔街日报》、美国有线电视新闻网(CNN)以及新闻聚合网站Buzz Feed都推出了类似的聊新闻产品。
聊新闻的优势显而易见。由于人工智能已经完成了信息的挑选、加工工作,用户只需沉浸于内容本身,更精准更高效的获取新闻的核心内容。与人工编辑的推荐模式相比,对话形态的阅读模式更为直接。对只想了解新闻事实的读者来说,一百多字的回答已经可以满足信息获取的需要;而对于有更多需求的读者而言,也可以继续“聊”出新闻背后的故事,实现所谓的“深阅读”。
不过,聊新闻模式虽然看上去很美,但仍存在人工智能的“痼疾”。一方面,一问一答的背后,仍是类似于微博的“碎片化阅读”。记者发现,聊新闻系统在更深层次地回答新闻事件发生的原因、背景时,还不能反映新闻全貌,也很难呈现多元观点。这对于读者全面了解信息并采取行动帮助有限。
另一方面,尽管聊新闻对传统媒体报道进行了“强力瘦身”,但也造成聊天的内容“干巴巴”。“骨感”的新闻固然简单直接,但新闻报道内容的丰富与故事的“丰满”,绝非几百字所能概括。怎样聊新闻才能聊得精彩,这是人工智能未来要继续解决的问题。
竞争合作,人工智能还靠人工
在新闻行业,人工智能正在大展拳脚。基于算法的个性化推荐已成标配,机器人写作也渐成气候。从国外的美联社、路透社,到腾讯的梦幻写手(Dream Writer)、新华社的“快笔小新”,机器人记者越来越多地出现在新闻当中。除了文字,语音、视频等领域也均有相关技术出现,让新闻更好读、更好听、更好看。
清华大学新闻与传播学教授彭兰认为,人工智能的出现,使媒体进入“智媒时代”,其三大特征是:万物皆媒、人机合一、自我进化。
彭兰认为,在智媒时代,人工智能将使媒体生态在新闻生产系统、新闻分发平台、用户平台、信息终端四个维度发生变化,每个维度的变化都意味着机器的进入。例如在新闻分发平台,某些平台开始提供基于基础性智能算法模型,为不同的用户呈现他们所感兴趣的内容,这些新出现的新闻分发平台都不是传统媒体所控制的。
目前,人工智能在新闻编辑、数据分析、线索收集等方面已有不小的进展。不过,仍存在一些问题,比如信息核查的不准确、算法识别不力导致的假新闻、按兴趣推送带来的观点极化等。与此同时,机器人写作也面临着只有速度缺乏温度的问题,在语言和分析上的功力难比人类记者。
人工智能的出现,能够将新闻从业者从简单、重复性的工作中解放出来。不过,目前的人工智能仍处于探索状态,需要数据的积累和模型的优化。事实上,无论是技术的进步还是人工智能的操作,其背后都需要人类的研发、操作和协助。这种交互式的“竞合关系”,将继续存在于新闻行业当中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30