
融合大数据,司法改革更应迎难而上
一名法官一年最多能办多少案件?应该如何对他进行业绩评价?随着大数据、人工智能的运用,机器会取代人吗?律师将来会不会失业……当大数据进入司法权力运行,会是怎样的景象,人们不乏曼妙的畅想,日前,法制日报社与相关专业机构联合举办的公司法务年会上,一些更技术化的议题成为会议热点。
新技术给社会带来无穷可能,作为社会运转的秩序维护者,司法权该有怎样的适应乃至作为?“智慧司法”作为一个新兴名词甚至进入两高的人大报告,可见司法并不排斥(甚至在主动迎接)新技术时代的裁量方式改变。高科技是不是意味着所谓的“电脑判案”,类似的畅想曾经长期出现在人们的讨论中,有美好的期待,比如彻底解决案多人少的问题等,但真到了具体实践会发现,技术给司法带来的改变,更倾向于工具性的帮助,而非人脑智慧的替换。
信息数据的归纳可以为同类案件的统一裁量尺度提供借鉴,而非电脑直接代替人脑,司法互联网化更多也是促进一些事务性的司法服务更便捷,包括立案、递交诉讼材料等。大数据化的诸项司法职能,给公众的司法体验带来一些改变,也可以助推旧有司法问题的择机破解,但技术毕竟还是技术,技术需要充分调动人的参与,才有“智慧司法”所预期的更多可能性。
“大数据的运用让法院各项工作尝到了甜头”,这里的“甜头”到目前为止依然是辅助性质的,这是面对新技术应有的理性,正如化解社会纠纷鼓励走司法途径,也要警惕“司法万能”的倾向。大数据可以“辅助”办案,可以推动正在进行的各项司法改革,在其中尤其要强调人的因素。正如清华大学教授王亚新所言,信息化技术在司法实践及改革的运用中仍要注意两方面的问题,一是技术与法官、检察官、司法辅助人员等“人”的融合,二是技术与司法程序的融合。
大数据的基础在于集纳和记录,通过数据分析给司法裁量提供建议和监督,现在进行的数据实践,被寄希望于“提供统一适用、清单式的办案指引,还能提示证据是否存在瑕疵、证据之间是否存在矛盾”,这是技术所带给人的便捷和促进。在办理案件“全程留痕”的期待中,干预司法能否同样全程借此实现忠实记录,有待继续探索。有必要清醒地认知到,对权力干预司法的记录,或者更大范围内对案件诸多证据细节的大数据收录,数据化录入这一关键程序依然需要司法从业人员的个人作为,考验专业保守、程序是否严格要求以及具体从业者的抗压能力。当然,公检法司全程的案件程序数据化,有助于不同法律职能部门的互相牵制和最终的责任追究,但对于干预司法因素的及时记录依然有赖记录主体的实践落实到位。记录是个具体的动作,会形成文字,可能新技术时代告别了白纸黑字等传统存在方式,记录本身的载体并不会因为技术改变就有对干预的天然抵抗力。
最高法院多次发文贯彻领导干部干预司法的全程记录制度,实践中最受期待的依然是记录的具体方式和载体,尤其是记录行为如何无障碍实现。本轮司法体制改革归结到最终,其目的在于让司法的裁量彻底回到专业的逻辑和司法规律本身。新技术对司法改革所带来的推动值得期待,技术与法官、检察 官 、司 法 辅 助 人 员 等“人”的融合考验制度能否为司法从业人员有所作为提供制度托底,“技术与司法程序的融合”则要求,严密执行的司法程序在人使用新技术过程中做到相关信息的有闻必录,无论是案卷证据材料、程序细节,还是可能存在的某些对司法的干预状况。技术为制度的进步创造条件,而进步的源动力依然在于人的实践。司法与大数据的融合正在进行,人在新一轮的系列司法体制改革中的诸项实践(包括彻底破解具体的改革牵绊),显然备受期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30