京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的教育新使命
大数据时代,数据科学给予了自然科学、工程技术、人文社会科学量化的依据,意味着量化研究走进了各个科研领域的新时代。同时,大数据的建立及其研究结果,不仅是科学研究和技术创新的平台,也是人才培养的基础,更是各种决策的依据。
欧美发达国家和研究机构均非常重视大数据,在国家层面建立了教育大数据中心。譬如,美国建有国家教育大数据中心,其中涵盖近些年来不同类型的大学与中小学在数量、经费、教师人数等诸多方面的数据以及统计结果,经合组织(OECD)和英国也都各自建有教育数据中心。
近期,我们到美国密西根大学进行访问,深深感受到该校作为世界一流大学,大数据意识非常浓厚。该校建立的密西根大数据研究所(MIDAS),与图书馆以及多媒体服务中心等密切联系,为密西根大学乃至密西根州和全美的教学以及科研服务。密西根大数据研究所依托密西根大学而建,旨在利用大数据,服务科学研究、教学、培养人才以及做出各种决策。该研究所由跨学院、多学科的40多位密西根大学的科研人员组成,包括统计、生物统计学、数学、计算机科学、工程、信息科学等专家。研究范围不仅涵盖数据管理、数据共享、统计、机器学习、信息技术等领域,还包括天文学、进化生物学、疾病模型发现、卫生政策、材料合成、个性化医学、社会科学等领域。
据了解,密西根大数据研究所包括数据科学的挑战行动计划(涵盖学习分析、交通、社会科学、个性化医疗和健康领域)、数据科学教育和培训计划,以及一个工业参与项目。密西根大学的同仁们已经认识到:数据科学现已成为继理论、物理实验和计算分析之后的科学发现的第四模式。基于大数据的技术不仅能够应用于科学研究,也在教育、健康、政策分析和商业决策中产生重大影响。
无论是欧美国家层面的大数据中心,还是作为综合性大学的密西根大学的大数据研究所,都具有如下特点:首先是多样性,要从多个维度赋予某个事物的数据内涵;其次是动态性,数据要不断更新,政府组织、研究机构和各级学术组织,乃至每个科研工作者都是数据的提供者;再次是直观性,大数据不仅仅是数据的提供,更是数据统计的直观图像的研究、建构和分享;最后是共享性,每个人都是大数据的分享者。
就我们团队所见而言,无论是美国小学教室的墙报,还是中学课堂的教室文化,包括密西根大学数据研究所以及曼哈顿街区的广告,大数据以及数据文化无处不见。数据意识正在成为美国高等教育和中小学教育的隐性或显性课程,数据科学的文化正悄然兴起。在我国基础教育领域,数据意识重视程度远不如高校。例如,2015年8月27日,在北京市委市政府的支持与指导下,由中关村管委会、海淀区政府、北京大学、北京工业大学四方共同筹建了北京大数据研究院。清华大学、电子科技大学、中国人民大学等高校都成立了数据研究院、大数据研究中心或统计与大数据研究院等。尽管我国高等院校在数据研究院(中心)人员构成的跨学科性、与图书馆的协作性、为国家和地方做出决策的服务性等方面还达不到理想的程度,但我国部分高校对数据的愈发重视,将倒逼基础教育阶段的校长和教师们更加重视数据意识的培养。
在大数据时代,作为基础教育的主阵地,要培养的数据意识包括:
首先,重视理解数据类型的多维度性。从来源形式分为数字、文本数据、音频、视频数据等;从能否有序分类,可分为从结构性、半结构性和非结构性数据;从数据的存在形式又可分为时间数据、空间数据和生态系统的时空数据等。数据类型的多样性,是大数据时代建立全局观数据意识的前提。
其次,注重从多种途径采集数据。包括官方发布的数据、公共资源数据、研究机构和非政府组织发布的数据、各种研究的数据等。大数据不仅注重数量,更要注重同一事物的数据表征形式的多样性,后者是数据客观表征事物的根本保证。
再次是统计意识。包括利用数据进行统计决断,获得统计规律的意识,认识到统计的结论不是绝对,更不是唯一。
最后则是运用软件进行数据处理。包括运用图形计算器处理数据,在校本课程开发中,可以开发出各种可视化分析软件课程,供学生选用等。
作为基础教育工作母机的师范大学,不仅要培养具有数据意识与能力的师资,还要建构区域基础教育大数据研究中心,收集、建构、统计某个区域基础教育的方方面面大数据,着眼于服务于区域、学校的基础教育科研,服务于国家基础教育决策,进而建构区域基础教育生态系统指标,推动我国基础教育的健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21