
大数据时代的教育新使命
大数据时代,数据科学给予了自然科学、工程技术、人文社会科学量化的依据,意味着量化研究走进了各个科研领域的新时代。同时,大数据的建立及其研究结果,不仅是科学研究和技术创新的平台,也是人才培养的基础,更是各种决策的依据。
欧美发达国家和研究机构均非常重视大数据,在国家层面建立了教育大数据中心。譬如,美国建有国家教育大数据中心,其中涵盖近些年来不同类型的大学与中小学在数量、经费、教师人数等诸多方面的数据以及统计结果,经合组织(OECD)和英国也都各自建有教育数据中心。
近期,我们到美国密西根大学进行访问,深深感受到该校作为世界一流大学,大数据意识非常浓厚。该校建立的密西根大数据研究所(MIDAS),与图书馆以及多媒体服务中心等密切联系,为密西根大学乃至密西根州和全美的教学以及科研服务。密西根大数据研究所依托密西根大学而建,旨在利用大数据,服务科学研究、教学、培养人才以及做出各种决策。该研究所由跨学院、多学科的40多位密西根大学的科研人员组成,包括统计、生物统计学、数学、计算机科学、工程、信息科学等专家。研究范围不仅涵盖数据管理、数据共享、统计、机器学习、信息技术等领域,还包括天文学、进化生物学、疾病模型发现、卫生政策、材料合成、个性化医学、社会科学等领域。
据了解,密西根大数据研究所包括数据科学的挑战行动计划(涵盖学习分析、交通、社会科学、个性化医疗和健康领域)、数据科学教育和培训计划,以及一个工业参与项目。密西根大学的同仁们已经认识到:数据科学现已成为继理论、物理实验和计算分析之后的科学发现的第四模式。基于大数据的技术不仅能够应用于科学研究,也在教育、健康、政策分析和商业决策中产生重大影响。
无论是欧美国家层面的大数据中心,还是作为综合性大学的密西根大学的大数据研究所,都具有如下特点:首先是多样性,要从多个维度赋予某个事物的数据内涵;其次是动态性,数据要不断更新,政府组织、研究机构和各级学术组织,乃至每个科研工作者都是数据的提供者;再次是直观性,大数据不仅仅是数据的提供,更是数据统计的直观图像的研究、建构和分享;最后是共享性,每个人都是大数据的分享者。
就我们团队所见而言,无论是美国小学教室的墙报,还是中学课堂的教室文化,包括密西根大学数据研究所以及曼哈顿街区的广告,大数据以及数据文化无处不见。数据意识正在成为美国高等教育和中小学教育的隐性或显性课程,数据科学的文化正悄然兴起。在我国基础教育领域,数据意识重视程度远不如高校。例如,2015年8月27日,在北京市委市政府的支持与指导下,由中关村管委会、海淀区政府、北京大学、北京工业大学四方共同筹建了北京大数据研究院。清华大学、电子科技大学、中国人民大学等高校都成立了数据研究院、大数据研究中心或统计与大数据研究院等。尽管我国高等院校在数据研究院(中心)人员构成的跨学科性、与图书馆的协作性、为国家和地方做出决策的服务性等方面还达不到理想的程度,但我国部分高校对数据的愈发重视,将倒逼基础教育阶段的校长和教师们更加重视数据意识的培养。
在大数据时代,作为基础教育的主阵地,要培养的数据意识包括:
首先,重视理解数据类型的多维度性。从来源形式分为数字、文本数据、音频、视频数据等;从能否有序分类,可分为从结构性、半结构性和非结构性数据;从数据的存在形式又可分为时间数据、空间数据和生态系统的时空数据等。数据类型的多样性,是大数据时代建立全局观数据意识的前提。
其次,注重从多种途径采集数据。包括官方发布的数据、公共资源数据、研究机构和非政府组织发布的数据、各种研究的数据等。大数据不仅注重数量,更要注重同一事物的数据表征形式的多样性,后者是数据客观表征事物的根本保证。
再次是统计意识。包括利用数据进行统计决断,获得统计规律的意识,认识到统计的结论不是绝对,更不是唯一。
最后则是运用软件进行数据处理。包括运用图形计算器处理数据,在校本课程开发中,可以开发出各种可视化分析软件课程,供学生选用等。
作为基础教育工作母机的师范大学,不仅要培养具有数据意识与能力的师资,还要建构区域基础教育大数据研究中心,收集、建构、统计某个区域基础教育的方方面面大数据,着眼于服务于区域、学校的基础教育科研,服务于国家基础教育决策,进而建构区域基础教育生态系统指标,推动我国基础教育的健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04