
清华大学牵头成立大数据系统软件国家工程实验室
9月11日,2017国际大数据产业技术创新高峰论坛暨大数据系统软件国家工程实验室第一次会议在清华大学举行。清华大学校长邱勇、副校长杨斌、教育部科学技术司司长雷朝滋、工业和信息化部信息化和软件服务业司副司长安筱鹏、国家发展和改革委员会高技术产业司创新能力处副处长袁军等出席并致辞。活动由清华大学副校长薛其坤主持。
邱勇在会上致辞。石加东 摄
邱勇向国家发展和改革委员会、教育部、工业和信息化部的支持与信任表示感谢。邱勇说,最近国家发改委正式批复成立“大数据系统软件国家工程实验室”,由清华大学为承担单位,北京理工大学为参与单位,联合国防科大、北京大学、人民大学、中山大学、百度、阿里巴巴、腾讯等七家单位,与公安部、环保部、国家气象局、农科院、中石油等单位开展深度合作,体现了高度交叉、高度合作的特点,实验室建设运营意义重大,我们对实验室未来充满期待。
邱勇指出,大数据技术已成为引导社会变革的新兴力量。清华大学在数据科学与工程、大数据应用等方面具备了良好的学科基础,并在大数据软件研发及产业化方面有了长期积累,有些成果已得到应用。例如,清华大学开发的气象大数据平台,已在国家气象中心和21个省级气象中心部署上线,基于相关预报成果,为2016年杭州G20峰会的成功召开提供了重要保障。在环保领域,建设了环保部大数据平台和福建省全国首个省级生态环境大数据平台。在刚刚结束的金砖国家峰会上,首次通过大数据分析,实现了高精度的大气空气质量保障,为后续工程实验室发展奠定了良好基础。
邱勇强调,大数据系统软件是挖掘大数据价值的基础设备,是大数据硬件与应用间的桥梁。清华大学要面向国家大数据产业需求,重点突破大数据系统软件技术瓶颈,支撑创新驱动产业转型升级及关键领域的自主可控,为我国重大战略方向、重点工程的大数据应用提供技术支撑和系统建设。
对于大数据系统软件国家工程实验室的建设,邱勇提出四点要求:一是要打造顶级的大数据系统软件人才团队,突破关键技术;二是要构建共性的技术平台,支撑多个领域的垂直大数据应用体系;三是要打通线上和线下数据链条,开展跨领域合作,形成各类数据连通共享的平台;四是要积极面向产业大数据人才提供服务,建设灵活有效的实验室平台支撑服务体系。
雷朝滋(右)、安筱鹏(左)分别致辞。石加东摄
雷朝滋、安筱鹏先后致辞,充分肯定清华大学、共建合作单位在大数据系统软件和产业化方面的工作成果,表示相关部委机构将一如既往地支持实验室工作,鼓励实验室从技术突破和产业应用等方面为我国大数据事业发展增添动力。
揭牌仪式现场。石加东摄
邱勇、雷朝滋、安筱鹏、国防科技大学计算机学院院长廖湘科院士、北京理工大学副校长陈杰、中国人民大学副校长刘元春、清华大学信息学院院长陆建华院士、大数据系统软件国家工程实验室主任孙家广院士共同为大数据系统软件国家工程实验室揭牌。
随后,孙家广介绍了实验室建设情况。实验室将大力引进国内外高校、研究机构和企业界的大数据高端人才,以大数据全生命周期管理为核心,致力于在大数据存储、处理和计算分析的关键环节实现技术突破,构建大数据系统软件产业的创新网络,促进大数据与各行业应用的深度融合。
孙家广、陈杰、廖湘科、李泽椿(从上至下、从左到右)分别发言。石加东摄
陈杰作为参建单位代表,廖湘科作为实验室共建单位代表,中国气象台原台长李泽椿院士作为合作单位代表分别发言,表示将与清华全力配合、共同协作,发挥好各自单位优势,为实验室建设发展共同努力、共创硕果、共享未来,为我国大数据系统软件自主可控发展作出贡献。
美国科学院、工程院、艺术与科学院院士、清华大学访问教授迈克尔·乔丹做了主题报告。清华大学及国内外大数据领域十余位知名专家学者出席,共同探讨我国大数据系统软件的发展前景。
在同期举办的2017国际大数据产业技术创新高峰论坛上,副校长杨斌介绍了清华大学在大数据领域的工作布局和有效探索。他表示,高峰论坛的召开标志着清华大数据技术研究进入到一个新的阶段,期待与会嘉宾共同绘制大数据产业技术创新的蓝图,共同推动大数据领域的技术与应用创新落地。
杨斌在高峰论坛上做主旨报告。
随后,美国工程院院士、清华大学访问教授希·莫罕,百度公司副总裁王海峰、阿里巴巴集团副总裁刘松、腾讯云公司副总裁黎巍分别围绕“区块链与大数据技术”“百度人工智能”“数据智能生态化实践之路”“社交网络大数据——从建设到赋能”做了主题演讲。数据科学研究院院长俞士纶教授出席并致辞,清华大学软件学院院长、大数据系统软件国家工程实验室执行主任王建民主持论坛。
2017国际大数据产业技术创新高峰论坛现场。石加东摄
本次活动的举行,标志着大数据系统软件国家工程实验室正式启动。各共建单位对实验室发展前景充满信心,一致表示,将与清华大学精诚合作,为推动大数据技术的产学研协同创新机制而努力,为推动我国大数据软件开发应用技术和产业发展提供强有力的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09