
小米论坛在短短四年时间里,拥有注册用户2000万,总发帖量超过两亿条。其中,操作系统MIUI就收集到上亿个用户反馈贴,帖子打印出来的纸张可绕地球一圈。两亿条用户反馈贴,是不是大数据呢?当然是,都是客户意见、建议的真实表达,都是需求、问题的直接陈述,是含金量极高的大数据,是许多手机厂商艳羡的大数据。
被冠以小米口碑营销内部手册的《参与感》对大数据只字未提,笔者也未搜索到雷军在公开讲述小米模式时提及大数据。但这不表明雷军不重视大数据,作为全国人大代表,他2014年的提案就是《关于加快实施大数据国家战略的建议》。我以为小米是目前大数据应用最成功的企业之一。
大数据背后是海量的客户,要让数量不多的员工,真正面对数百万、甚至上千万的客户,这在互联网出现以前简直是天方夜谭。
传统媒体也能面对巨量的客户,比如人民日报,据官方数据,2013年1月1日,人民日报发行量超过300万份。但这是单向的,只是人民日报把党的声音传递给大家;这300多万读者(甚至更多,1张报纸可能多人看)的想法是无法都反馈给人民日报的;即使大家都写信给人民日报表达自己的心声,人民日报也没有足够的工作人员来拆读这些来信,也没有足够的版面来刊登这些来信。
互联网的出现,尤其是社交媒体的出现,让企业、员工面对巨量客户变为可能。让我们看看小米论坛是怎样处理海量的用户需求的:首先,在论坛做恰当的帖子辅助功能,帮助用户尽量格式化提交需求;其次,用户在碰到同样需求的同时,能直接跟着表达我也需要这个功能。这样,每周下来,紧急的功能开发需求自然会按热度排到帖子前面。小米将数据处理前移到了数据生成之前。
小米论坛里的这个小小的按钮我也需要这个功能,顶得上成千上万封人民日报读者来信主要观点的统计,顶得上无数场焦点小组的讨论收集的客户需求。这个小小的按钮,将有相近表达的人汇聚在了一起,小米员工对这个议题的回复,所有的人都能看见,无需一一回复。这就是大数据的力量。当然,大数据技术远比这个按钮要复杂得多。
阿里巴巴集团数据委员会委员长车品觉说:大数据的本质就是还原用户的真实需求。与其在数据中去找寻客户的意见、需求,那何不让企业、员工直接面对客户呢?小米更具革命性的做法是,要求员工全员泡论坛、刷微博。在小米,泡论坛就是工作。对那些认为小米客服面对用户就行了的工程师,小米联合创始人黎万强曾这样说:在小米不能这样干,如果你不理解,你就把它当成工作考核,而小米是没有KPI考核的。这说到底是让员工浸泡在大数据里,泡在客户堆里。
泡论坛可以了解客户需求,收集产品问题;可以回复用户的意见、建议;也可以追问用户问题,与用户进一步的沟通。小米员工泡论坛,让论坛上的小米用户倍感亲切,他们的声音有人倾听,他们的意见有可能被采纳,小米着力营造的参与感就显现出来了。这极大的鼓舞了论坛用户的活跃。通过论坛,小米用户真正参与了产品、营销的设计。这带来了一个企业与用户共赢的局面,企业根据用户意见改进产品,用户也拿到了自己想要的功能和产品。
更为重要的是,泡论坛实现了员工激励。相对于一个冷冰冰的大数据结果传到员工那里,以此指导员工工作;让员工直接面对客户,结合自己的工作来应用数据,员工的积极性会更高。小米员工直接面对客户,感受客户的喜怒哀乐,与客户建立感情,与客户做朋友。员工是在为朋友开发产品,为朋友服务,接受朋友的表扬与批评。这就是小米无KPI的秘诀:工作驱动真真切切来自用户的反馈。
简单说来,小米式大数据,是将数据处理前移到数据生成之前,是让员工浸泡在大数据里。小米的这两点做法帮助小米践行了用户参与,实现了KPI之外的员工工作驱动。在大家都在嚷嚷却不知道大数据怎么做的今天,这是更靠谱、更具操作性的大数据应用案例,值得借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10