京公网安备 11010802034615号
经营许可证编号:京B2-20210330
目标“零库存”蘑菇街大数据重塑“时尚新零售”
8月30日,蘑菇街在广州发布2017年秋冬女装潮流趋势,对潮流元素进行分析并作出预测。
蘑菇街时尚商品总监张欣表示:“通过大数据来洞察和预测商品潮流趋势,不但能够帮助平台挑选更新更好的款式商品提供给消费者,还将能够实现精准库存预测,推动服装行业供给侧的升级。”
未来,消费者穿在身上的可能是一身“美丽的数据”。同时,如果能做到比消费者更先一步掌握这些数据,对女装行业来说,无疑是一种重塑和升级。
张欣介绍,为了尽可能地掌握女性的消费选择,蘑菇街做了海量的市场调研数据分析,数据采集对象上至蘑菇街全球街拍、设计师品牌、快时尚品牌,下至批发市场以及日常女性真实的选装场景。另一方面,蘑菇街做了全渠道销售的大数据分析,从中得出对用户的款式、风格、兴趣、场景、购买力等偏好的洞察。
“大数据的价值在于对数据的 加工能力 ,实现数据的 增值 。数据技术发展可以无限逼近消费者内心需求,而掌握数据就是掌握消费者需求。”张欣表示。
蘑菇街的时尚大数据结合了传统电商的流量效率类数据和时尚品牌公司的商品效率类数据,从而使数据囊括的范围更加全面,从销售环节逐步深入到产品的设计环节,突破了“生产-销售-数据”的小闭环。在洞察每个单品细节设计的同时,还能够更好地为用户挑款选款,提前了解到用户的需求,能够精准快速地服务用户满足用户需求。
蘑菇街希望通过对大数据的重塑,构建更聪明、更能满足女性用户需求的“时尚新零售”,更好地推动服装行业的发展。
蘑菇街的趋势大数据不但能够帮助平台用户在购买衣服的时候给出合理建议,让用户更快更精准地购买自己喜欢的潮款;对电商商家来说意义同样重大,可以帮助商家解决一直以来令人困扰的款式预测和库存问题。通过大数据分析,可以得出更加准确的款式预测,并基于大数据进行款式判断算法,经过流通环节的测款等方法做到最大程度的精准库存预测,从而做到“零库存”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28