京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据指数基金发行提速
随着南方、广发、博时3家基金公司率先发力大数据基金产品,这一全新的基金品种正成为眼下互联网基金领域新的焦点。目前,10余家基金公司正在申请或已经获批成立发行大数据指数基金产品。中国证监会最新公告显示,已获批3只,等待“准生证”的有5只,再加上已经成立的上海东方证券资管、南方基金、广发基金、博时基金旗下的8只大数据基金,大数据基金的数量将达16只,涉及的互联网公司有雪球、360金融、百度等在内的20余家。
有望跑赢传统指数
国务院日前印发的《促进大数据发展行动纲要》提出,要全面推进大数据发展和应用,深化大数据在各行业的创新应用。众禄基金研究中心王晶认为,近期发行的互联网大数据基金产品已不仅仅停留在借助互联网技术渠道或电商平台进行销售的阶段,而是在进一步应用互联网数据进行主动管理、灵活择时择股等方面有更多尝试。
“金融行业对数据具有天生的依赖性,数据应用的发展也推动着金融业的创新发展。大数据基金实际上是在互联网行业发展背景下,群体智慧对决个体智慧。”一家阳光私募的投资经理王卓玮表示,传统指数往往由一些媒体和第三方投资顾问公司合作制作,信息源少、数据相对有限、成份股更新慢,在基金投资中过于依赖个人智慧。而互联网大数据指数通过各个互联网平台不断更新数据源,能够实时推动海量用户参与数据完善。当大数据指数能够更好地呈现某一板块或上市公司的未来前景时,其投资价值有望超越传统指数。
以国内首只社交投资大数据指数中证雪球领先组合100指数为例,这一指数是天弘基金基于雪球大V用户的评论信息和投资组合数据所构建的互联网大数据指数。与市场其他指数不同,它对投资者“思想”和“行为”的反馈更多。
博时基金副总裁王德英表示,传统投资方式主要是投研人员去上市公司调研,了解财务数据来做投资决策,而大数据基金通过海量数据分析,对公司未来表现的预测确定性有望加强。可以说大数据基金是传统投研方式的升级,能反映部分传统数据无法统计的方面,比如投资者情绪、市场热点的变化等。
同时,大数据指数的调整更为灵活。王晶介绍,大数据指数基金跟踪指数调整周期短,一般为1个月,这类基金换股快,个股投资比例小,有效避免单一股票对组合的影响。从成立时间较长的银河定投宝和广发100来看,两只基金前十大重仓股持股比例不超过20%,而且前十大重仓股更换率均较高。
多方面有待完善
在看到大数据诸多优势之余,有专家也表示,大数据基金实际上是基于多因子模型的指数投资产品,互联网大数据只是其中一个选股因子,对于市场因子、基本面因子等其他因子依然要重视,否则指数本身走势将会失真。
目前,大数据基本来源于3个渠道:电商、门户网站和搜索网站。不同渠道的数据特征有所不同。比如,电商的数据包含成交额、价格走势等,而搜索网站的数据更多反映了用户的关注点和情绪因素,而不是实际发生的行为,门户网站的数据也更多反映用户关注点和情绪。
数据来源的不同,导致大数据指数量化选股模型不同,造成各只基金的风格、投向不同。即使依据相同大数据的基金风格也差别很大,比如新浪参与的2只大数据指数是基于新浪财经数据和微博社交数据,银联公司涉足的3只指数均基于同一线下刷卡消费数据源,奇虎360的指数基于其搜索和手机、电脑数据。而同样是与雪球联合的中证雪球社交投资精选大数据指数、中证雪球领先组合100指数在数据源选择上就有相当程度的重合。
有专家表示,互联网数据来源范围限制或重叠,容易导致有效覆盖样本股范围较窄,且受数据噪音影响造成还原市场投资情绪偏离较大,易受人为主观因素干扰。如银联公司涉足的3只大数据指数,均采用银联线下POS收单数据、针对消费领域数据,且银联线下数据来源渠道复杂,样本重合度较大,较易造成相互干扰。“从市场上已成立基金的业绩表现看,大数据基金的中长期业绩比较稳健。”王卓玮说。
针对未来前景,业内人士表示,大数据基金还有许多需要完善的地方,可以通过产品迭代和试错来解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12