京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据指数基金发行提速
随着南方、广发、博时3家基金公司率先发力大数据基金产品,这一全新的基金品种正成为眼下互联网基金领域新的焦点。目前,10余家基金公司正在申请或已经获批成立发行大数据指数基金产品。中国证监会最新公告显示,已获批3只,等待“准生证”的有5只,再加上已经成立的上海东方证券资管、南方基金、广发基金、博时基金旗下的8只大数据基金,大数据基金的数量将达16只,涉及的互联网公司有雪球、360金融、百度等在内的20余家。
有望跑赢传统指数
国务院日前印发的《促进大数据发展行动纲要》提出,要全面推进大数据发展和应用,深化大数据在各行业的创新应用。众禄基金研究中心王晶认为,近期发行的互联网大数据基金产品已不仅仅停留在借助互联网技术渠道或电商平台进行销售的阶段,而是在进一步应用互联网数据进行主动管理、灵活择时择股等方面有更多尝试。
“金融行业对数据具有天生的依赖性,数据应用的发展也推动着金融业的创新发展。大数据基金实际上是在互联网行业发展背景下,群体智慧对决个体智慧。”一家阳光私募的投资经理王卓玮表示,传统指数往往由一些媒体和第三方投资顾问公司合作制作,信息源少、数据相对有限、成份股更新慢,在基金投资中过于依赖个人智慧。而互联网大数据指数通过各个互联网平台不断更新数据源,能够实时推动海量用户参与数据完善。当大数据指数能够更好地呈现某一板块或上市公司的未来前景时,其投资价值有望超越传统指数。
以国内首只社交投资大数据指数中证雪球领先组合100指数为例,这一指数是天弘基金基于雪球大V用户的评论信息和投资组合数据所构建的互联网大数据指数。与市场其他指数不同,它对投资者“思想”和“行为”的反馈更多。
博时基金副总裁王德英表示,传统投资方式主要是投研人员去上市公司调研,了解财务数据来做投资决策,而大数据基金通过海量数据分析,对公司未来表现的预测确定性有望加强。可以说大数据基金是传统投研方式的升级,能反映部分传统数据无法统计的方面,比如投资者情绪、市场热点的变化等。
同时,大数据指数的调整更为灵活。王晶介绍,大数据指数基金跟踪指数调整周期短,一般为1个月,这类基金换股快,个股投资比例小,有效避免单一股票对组合的影响。从成立时间较长的银河定投宝和广发100来看,两只基金前十大重仓股持股比例不超过20%,而且前十大重仓股更换率均较高。
多方面有待完善
在看到大数据诸多优势之余,有专家也表示,大数据基金实际上是基于多因子模型的指数投资产品,互联网大数据只是其中一个选股因子,对于市场因子、基本面因子等其他因子依然要重视,否则指数本身走势将会失真。
目前,大数据基本来源于3个渠道:电商、门户网站和搜索网站。不同渠道的数据特征有所不同。比如,电商的数据包含成交额、价格走势等,而搜索网站的数据更多反映了用户的关注点和情绪因素,而不是实际发生的行为,门户网站的数据也更多反映用户关注点和情绪。
数据来源的不同,导致大数据指数量化选股模型不同,造成各只基金的风格、投向不同。即使依据相同大数据的基金风格也差别很大,比如新浪参与的2只大数据指数是基于新浪财经数据和微博社交数据,银联公司涉足的3只指数均基于同一线下刷卡消费数据源,奇虎360的指数基于其搜索和手机、电脑数据。而同样是与雪球联合的中证雪球社交投资精选大数据指数、中证雪球领先组合100指数在数据源选择上就有相当程度的重合。
有专家表示,互联网数据来源范围限制或重叠,容易导致有效覆盖样本股范围较窄,且受数据噪音影响造成还原市场投资情绪偏离较大,易受人为主观因素干扰。如银联公司涉足的3只大数据指数,均采用银联线下POS收单数据、针对消费领域数据,且银联线下数据来源渠道复杂,样本重合度较大,较易造成相互干扰。“从市场上已成立基金的业绩表现看,大数据基金的中长期业绩比较稳健。”王卓玮说。
针对未来前景,业内人士表示,大数据基金还有许多需要完善的地方,可以通过产品迭代和试错来解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27