京公网安备 11010802034615号
经营许可证编号:京B2-20210330
竞技体育如何适应大数据时代
时代变迁会让社会的变不断的改变,也相继改变了竞技体育相关系统所处的大环境。大数据已经成为了整个技术变革的驱动,对社会分别有着广度和深度的影响,其意义已经远远不止单纯的技术创新的层面,而成为了一个新的时代标杆。竞技体育生态系统被改变的同时,也面临着一些重要的挑战,我们应该顺应时代发展规律,为竞技体育大数据领域开辟出一条可持续发展的道路。
“大数据”(big data )的关注度越来越高。其实它最初是指信息时代数据量的爆炸,但随着处理数据工具的进步,大数据便泛指信息时代数据的爆炸以及与之相关技术工具的总称。优迈体育了解到,这些技术包括:承担数据相关采集任务的物联网;承担数据存储任务的云计算;承担数据处理任务的数据挖掘、机器学习及人工智能等等技术。
我们知道,随着大数据相关技术在社会的各个领域广泛应用后,一个大规模的生产、分享和应用数据的时代便宣告开启。优迈体育认为,在大数据时代,我们获取数据的能力不断提高,将使得不同事物之间相关性的发现变得更加普遍。大量相关关系的发现,大数据使人们对事物发展规律可以进行准确的预测。因此,建立在相关关系分析基础上的预测将是大数据时代的核心。
竞技体育系统是指:一定地域中竞技体育通过和环境相互作用,产生能量流动、物质循环和信息传递过程,从而构成的具有一定结构的功能整体。其中包括竞技体育主体以及与之相互联系的外环境,由此,竞技体育应顺应时代的发展问题,也就是说如何能够保持和外部环境的生态平衡问题,即时代变迁下竞技体育系统应如何做到自适应,主动的去选择发展道路。竞技体育系统的运行是围绕着一些竞技比赛而展开的,通过训练让运动员在比赛中达到最佳的竞技状态,并且在比赛中取得好成绩。大数据的最大价值在于“预测”,具体到竞技体育中来说,包括选材和预测。
大数据时代竞技体育系统所处的外部环境将变得更为复杂。物联网传感器、云计算、数据挖掘电网等信息技术的进步,为竞技体育系统走“大数据化”发展之路提供了物质基础。其次,大数据时代,以政治、经济、文化为代表的社会环境所发生变化,包括大数据国家战略的出台,以大数据为基础的新型消费经济的盛行、大数据思维的转变及数据文化、互联网文化日渐强大等。
优迈体育了解到,这些转变将为竞技体育系统的“大数据化”发展方向提供社会基础和文化基础。最后,在大数据时代,不同国家竞技体育系统之间复杂的竞争关系,将变得更加紧张。随着数据量的急剧膨胀,迫使数据采集、存储及分析的技术更新速度加快,从而又进一步加速了知识创新的速度,扩宽了知识创新的渠道,因此,在大数据时代,以数据争夺、信息收集及技术较量为目的的竞争行为也将变得更为激烈。
在竞争日益激烈的大数据时代,竞技体育只有紧紧把握时代所赋予的物质、社会及文化基础,主动调整自身系统,才能保持系统自身与环境的生态平衡,进而实现自身更加健康、可持续性的发展,因此,从这个意义上讲,竞技体育系统主动走大数据发展之路将是其必然的时代抉择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27