京公网安备 11010802034615号
经营许可证编号:京B2-20210330
切入核心需求瞄准大数据农业
基于传感网络和3G/4G等无线宽带网络融合的新应用,通过在大棚内现场布置光照、温度、湿度等无线传感器、摄像头和控制器,用户可以随时随地查看农业大棚内的温度、湿度等信息,并可远程控制浇灌和开关卷帘等设备;利用RFID和二维码等技术对农产品进行标记和管理,监控和记录所有产品流通环节,为政府执法人员、企业以及消费者提供溯源信息;通过在农机上安装定位和农机工作状态采集设备,可实现智能化的农机定位调度与管理。类似的应用还有冷链运输监控、智能化粮食储存管理等。当前,我国电信运营商已经在智慧农业领域迈开了步伐,在黑龙江、北京、山东、湖南等省份广泛推广,给传统农业生产带来了革命性变化。未来,运营商还需要往哪些方面努力?
更深切入
农业信息化的核心需求
“我们运营商已经做了一些物联网示范项目,很多是局部的信息化应用,真正能切入行业核心业务流程的不多,因此可规模化推广的应用不多,而无法规模化应用就无法获取规模化收益。”某运营商负责农业信息化的领导对记者说,电信企业目前在很多行业和社会领域做的信息化应用,在很大程度上是行业边缘部位化、底层化的应用,在需求部门看来,其实并不完全是核心、关键环节的应用。通过对一些示范项目的分析,他深深地感到,电信运营商为其他行业做信息化应用项目的思路,往往与该行业自身的信息化思路契合度不够,需要更深层次的交流互动,才能真正深入了解行业信息化的需求,致力于解决该行业和领域的核心问题。
比如农业部门关心的是如何实现农用机械的智能化远程控制,是农业生产经营中各类信息的无障碍流通,是对全球大宗农产品价格波动的实时监测等,这些具体而专业的需求,与目前电信行业信息化部门给农民手机发送的销售价格等市场信息,安装能打电话、能上网的多功能农村信息机这些应用,确实存在比较大的差距。正如国家杂交水稻工程技术研究中心研究员、袁隆平教授的助手黄崎所说,作为种业研究人员,面临中国的优质种子被国际种业巨头全面击溃、“自留地”寥寥无几的状况,他更关心的是信息化手段怎么帮助他监控育种情况、缩短育种周期、检测种子质量,这无疑是电信业需要更加深入研究的领域。行业间的“鸿沟”其实非常明显,如果不加以解决,那么电信运营商所提供的信息化解决方案将只能浮于表面,处于底层和边缘应用,搔不着这些行业的痒处,因而不能在政策支持下大规模推广。
即便是运营商在一些地方试点的“智慧农业”,规模也较为有限。从目前运营商推进信息通信技术改造升级传统农业的实践来看,运营商主要做的还是传统的卖管道服务,且大量传感类应用流量价值并不高。如何更广泛地切入核心需求,打造更具价值的ICT服务,是运营商需要思考的。例如,针对规模化生产以及高经济附加值的农业温室大棚需求,引导合作伙伴生产和提供专门适用于农业环境的各类传感与控制设备,同时利用无线宽带网络,各类农业现场信息可以在线、实时地传送到智慧农业的远程监控与调度中心,通过与专家系统结合,实现自动化的农业生产与智能化的决策分析;针对农机管理的需求,智能农机管理系统利用卫星定位(GPS)、无线通信、地理信息系统(GIS)、3G等高新技术,将农业机械的位置、图像、音频及其他农业机械参数等进行实时管理,有效满足用户对位置服务方面的各类需求,对农机具和农机管理人员进行远程调度,提高农机具的使用和管理效率。
放眼长远
瞄准大数据农业
由于互联网的信息收集优势,大量与农业相关的市场信息、产品信息、技术信息、资源信息开始在网上汇集,并出现专业分析,这大大方便了农业生产经营决策。截至目前,中国已有4万家农业类网站,演化出综合门户、研究分析、专业集成、产销对接等不同定位的农业网站,并进一步呈现加快细分的态势。不仅种植业、畜牧业、渔业、农产品加工等次级行业已经分开,就是每个行业内部也逐渐专业化,玉米、马铃薯、牛、羊、猪等专业网站不断涌现。记者认为,未来基于互联网大数据的营销方式将让农业的发展方式从根本上发生改变,将颠覆一般意义上的“生产——销售”模式,而是运用大数据分析定位消费者的需求,按照消费者的需求去组织农产品的生产和销售,从而让农产品不再卖难在理论上成为可能,也在现实中得到初步的实践,形成电子商务的“C2B”模式,即消费者对企业。未来,大数据农业值得期待!
运营商应该用长远眼光瞄准未来的大数据农业。运营商拓展“互联网+农业”有着品牌优势、网络平台优势、渠道优势、终端用户掌握优势。电信企业最为贴近用户,用户的通话数据以及相当一部分移动互联网使用行为数据,运营商都能获取。关键在于我们如何理顺体制机制中的相关制约环节,将目光放长远些瞄准更有吸引力的大数据农业,整合线上线下优势进行深入拓展。比如我们的电商平台能不能拓展范围,吸引农产品商家加盟?与各地政府农业部门合作的农村信息服务平台能不能整合到一个大平台上,与农户的通信消费数据一起整合收集其涉农行为的数据,通过数据分析和跨界融合形成新的商业模式。未来,大数据将是金矿,希望运营商不再“起了个大早,赶了个晚集”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27