
可穿戴+大数据:未来的梦想在何方
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户粘性。PC互联网时代促成了商业的繁华,与工业时代有个最大的区别就在于用户粘性被缩短,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网之后,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户粘性,也就是说基于智能手机的移动互联网更深一步地与用户之间建立了粘性。
如果用一句话来形容,也就是说PC互联网的用户粘性是按小时计算,而移动互联网的用户粘性被缩短到了按分钟计算,这种用户粘性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因所在。而进入可穿戴设备时代,由于人与设备之间实现了更深入,可以说是无缝的连接,用户粘性从移动互联网的按分钟计算转变到了按秒进行计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天开始就一直在争议中不断的飞速发展的原因。很显然的一个原因就是我们看到了当其所构建的用户粘性被进一步缩短之后,所释放出来的商业价值将超越当前由移动互联网所带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于粘性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会,而数据流入的背后隐藏的就是数据背后的商业呈现。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式。但其核心价值的大小则取决于大数据的延伸、挖掘,这也是我们所看到的谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用所造成,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者们而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还需要一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身上,而不是依赖于可穿戴设备的大数据挖掘商业模式上。制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1、数据过于碎片化。
由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能鞋子、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联、互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2、市场普及度不高。
由于可穿戴设备是一个新兴的业态,不论是业内外,对于可穿戴设备产业的认知都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓是陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小众。从产品形态层面来看,目前通常局限于智能手表、智能手环。而就从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。正是由于市场普及程度的制约,很显然地就制约了产品的用户使用量,制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3、用户粘性不高。
可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用粘性,但从目前的实际情况来看粘住用户还需要一段路要走。其中最主要原因是两方面,一是受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通讯等,还是软层面的算法、结果反馈等方面,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事于可穿戴设备产业的技术人才大部分都是从IT或通讯产业跨界而来。正是这两方面的因素,就导致了可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致普遍用户在购买可穿戴设备佩戴很短的一段时间之后,就直接将其抛弃了,这也就意味着开发者所采集的数据基本难以成为有效、有价值的数据。
当然,影响可穿戴当前数据有效采集的因素多种多样,上述三方面因素是制约着可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可以说在短时间内还将会伴随着整个产业的发展继续存在着,也就意味着在短期内将难以得到有效地改善。因此,对于可穿戴设备产业的创业者们而言,目前距离可穿戴设备大数据价值的梦想还有一段路,这个梦想在短期内还难以实现。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托于可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16