
大数据时代的创业趋势
面对信息化潮流,只有积极抢占制高点,才能赢得发展先机。世界正迈入大数据时代,随着互联网技术的不断发展,大数据成为一种重要资源,有利于推动创业创新。在此背景下,中央提出将“大众创业、万众创新”作为新常态下我国经济发展的一个重要引擎,是恰逢其时的时代号角。
(一)
大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。大数据之所以对于创业具有不同寻常的意义或价值,是因为大数据拥有以下特征:
一是大数据分析模式可激发创造力。传统研究方法是先提出假设,然后收集和分析数据来验证这种假设,即用一系列的因果关系来验证各种猜想。大数据时代探索世界的方法,不再始于假设,而是始于数据,根据数据发现以前不曾发现的联系。这种大数据分析模式不受限于传统的思维模式,因而能为人们提供更广阔的视野以及更新的角度。
二是大数据分析技术能预测和满足个性化需求。大数据的核心是预测,预测建立在对海量结构性和非结构性数据进行相关性分析的基础上。大数据技术可以对人的需求进行分析预测,有了个性化数据作为支撑,大数据服务将变得更为精准有效,每个人都可以通过大数据实现个人的喜好。电子商务推荐我们想要的商品,搜索引擎提供个性化排序,教育机构根据个人需求有针对性地提供教育培训,金融机构帮助用户进行有效的理财管理或提供贷款服务,企业通过技术支持实时获得客户的在线记录,并及时为他们提供定制化服务。以前创业者可能在生产产品后再寻找潜在消费人群,而在大数据时代,创业者可能基于需求倒推到产品生产环节。
三是云计算可使数据存储和数据分析成为一种公共服务。云计算将数据存储和数据分析转变为一种服务,这是一个重大的变革。云服务包括基础架构、平台和软件等3个层次。服务器、数据和软件都将保存在私营公司的平台上,创业者可以在平台上开发、部署、运行自己的应用程序,服务的收费取决于存储量、计算量、访问量等指标。借助“云”可实现公共资源的“按需配置”,不仅可节约资金,还可提高公共服务的质量。
(二)
大数据时代的创业趋势有如下几个特征:
其一,大数据服务走向订阅式定价模式,创业服务更个性,创业人群更普遍。订阅式定价模式是未来大数据服务的方向。这种模式使创业服务更个性化,从而扩大创业人群。目前,国内已形成平台型企业孵化器、创业咖啡、创业媒体、创业社区等孵化形态,共同构成市场化、专业化、集成化、网络化的“众创空间”。
其二,开放数据和开源技术使创业门槛降低,创业机会大大增加。大数据时代,人们寻找创业机遇,最重要的是数据收集和分析能力,从数据中找到好点子。首先,大数据技术在萌芽阶段就是开源技术,这会给基础架构硬件、应用程序开发工具、应用、服务等各个方面的相关领域带来更多的机会。其次,创业者不需要是统计学家、工程师或者数据分析师也可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。此外,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。
其三,大数据技术本身的发展,带来全新的创业方向。大数据时代,创新带动创业发展。大数据相关技术的发展,将会创造出一些新的细分市场。比如,数据技术产业,包括硬件方面的智能管道、物联网、服务器、存储、传输、智能移动设备等,软件方面的语言、数据平台、工具、结构与非结构数据库、应用软件等,服务方面的IDC、云计算、WEB应用等;数据采集业,包括定位、支付、SNS、邮件等行业;数据加工业,包括数据挖掘、数据分析、数据咨询等产业。这些都为创业者们提供了新的机遇。
(三)
当前,大数据时代下的创业热潮,需要政府大力支持,打破一切体制机制的障碍,让每个有创业愿望的人都拥有自主创业的空间,让创新创造的血液在全社会自由流动。
第一,建设数据开放型政府。坚持深化改革,营造创业环境。建立国家政府数据统一开放平台,建立政府部门和事业单位等公共机构数据资源清单,制定实施政府数据开放共享标准,对各公共部门完成开放数据任务情况进行审计,以促进公共服务数据的开放性,建设一个数据开放型的政府。
第二,形成数据开放与共享的机制。坚持开放共享,推动模式创新。依托“互联网+”等新技术构建最广泛的创业平台,鼓励发展众创、众包、众扶、众筹等,使创业资源配置更灵活、更精准,凝聚大众智慧,形成内脑与外脑结合、企业与个人协同的创业新格局。推动科学家和企业之间共享数据的制度建设;建立信息共享的通用标准,使其广泛可用;鼓励更多的专家研究、管理和使用数据。
第三,建立数据治理制度。开放、流通的数据是释放大数据价值的基本要求,以大数据推动创业需要完善的数据治理制度。首先,宏观上的顶层设计要解决“数据割据”问题,微观上的管理要注重“数据质量”,包括数据的正确性、完整性和一致性。其次,制定统一的政府开放数据标准,明确数据开放的范围、方式、内容、细化程度及数据格式。此外,还要建立相应的法律法规,界定数据资产的归属和使用,以解决挖掘数据商业价值与侵犯个人隐私之间的矛盾。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28