
人工智能大趋势下的选择
找到这个场景,并通过人工智能的方式获取数据,这才是大多数创业者应该好好琢磨的事情。对于某些创业者和投资人来说,这是一个真正大时代!
一、无意识中被人工智能控制
人是被系统控制的动物。这个系统的形成由规则和价值观、世界观所界定。规则是指人类确定的法律、经济、商业等法则。价值观和世界观是人关于对错行为的界定等。这些都会对人类的行为给出明确的边界,并最终控制人类的行为。
有个案例,《第五项修炼》一书中提到的啤酒游戏。游戏由顾客、零售商、制造商三者组成。它们通过订单和送货方式进行沟通:上游负责给下游供货,下游向上游下订单。
游戏的结果很有意思:不管参与者谁,跟你的社会地位、智商、性别、年龄、文化、职业等无关,最后的结果都是相同的:一开始缺货严重,最后库存积压严重。
在这个游戏中,规则一旦设定,所有人的行为模式都趋同。原因很简单,系统决定了你的选择,这个结构让所有人都倾向于采用类似行为,最后产生类似结果。不要自以为自己与众不同,或者运气更好,有更好的结果。
这个游戏也预示未来人工智能的世界会更加可怕:一个人已经被人工智能所控制,但还完全不知。这并不遥远。目前的弱人工智能已经在开始影响人们的选择。
比如说,我们购买衣服,你选择什么颜色,选择什么款式,看似是我们自己决定的。但随着系统对你了解越多,它会越来越推荐你可能会购买的衣服。获取资讯也是这样,今日头条等资讯内容渠道会根据你的阅读行为给你推荐信息,你跟它的互动越多,你留下的行为数据越多,它给你推荐的内容你会越来越感兴趣,把之前无法呈现的内容呈现在你面前,你的时间就会被它控制。
这个还是比较初级的人工智能优化。更深层的人工智能,将来的超级人工智能会把整个城市变成巨大的算法控制的机器智能。比如交通出行,它知道每个人要去哪里,会安排最合适的路线,由自动驾驶来实现,也不会堵车,人完全由超级机器智能控制。甚至连你要去哪里旅游,要购买什么商品,想听什么歌,看什么电影,玩什么游戏,是否要参加什么兴趣班,是否要贷款,是否换工作等等,通过万物互联的IOT,都能通过收集、分析、预测你的行为,最后无缝给你提供商品和服务。比如你最近突然对德国景点资讯感兴趣,系统根据各种行为预测你计划去德国旅行,它会帮你设计定好路线、安排好行程、定好酒店等。Uber或滴滴还会了解到你什么时候出行,在你出行前准备把车停在你家门口。从你有想法到最后实现的所有的服务,都有一个打包的商品和服务,你不用操心,甚至你要给谁带回礼物都给你做好提醒,并帮你购买。
今天,还远远做不到这么智能。但是未来人工智能就像人类的大脑,它是个机器,它没有情感,也没有所谓的明确意志,但是它通过机器学习,通过一些标注的数据,能够进行自我学习,最后能够识别数据,具备机器智能。IOT的万物互联则给机器大脑提供了各种数据素材,就像它的五官一样,最终把世界上的所有事物连接起来。包括人和物。
亚马逊的echo是智能音箱,但它不仅可以放音乐,不仅是它的全新的语音交互方式,更重要的是它连接了各种服务商,可以在上面购物,购买服务等。用户跟它交互越多,它越了解用户的需求。原先用户要购买一双球鞋,需要上网打开淘宝京东等,各种挑选后购买下单。而echo,则直接告诉它:我需要一双新球鞋,你有什么好建议。它可能会问你:你是不是还打算购买阿迪达斯的球鞋,尺码多少,颜色是什么样?最近有一款新的,价格多少?你是否需要。在得到你肯定回答后。当天或者第二天,球鞋就到你家了。所有的决策和支付在对话中完成。
这里的核心,不单纯是自然语音识别和自然语义的理解,更重要的是这个交互模式背后的支撑的服务商,他们通过这个语音交互跟用户连接在了一起。
二、大趋势下的选择
数据是人工智能时代的战略资产。所有人都非常明白这一点。关于底层的系统架构,大多数的创业者不用去考虑,主要是谷歌、亚马逊、阿里、腾讯、百度去考虑的事情。这个是基础生态。
对于更多的创业者来说,如何获取数据,如果在这个智能生态系统上通过场景应用去获得数据,在整个人工智能生态里面是有机会。
正如前面描述可以看到,距离超级机器智能时代还很远,这个很远,对创业者和投资人来说是巨大的机会,远比互联网和移动互联网时代更大的机会。之前只是卷入了这个世界上能够数据化的一小部分而已,而未来将卷入的是整个世界大大小小的事物。这个是何等壮阔的未来!
比如说跟传统行业合作,把数据标注好,在一个垂直领域建立人工智能的模型,不断地获取更多的数据,提供传统产业效率。在网上看到一个案例,原先卖风车的传统企业,卖完了,也不知道后续的情况,谁在用,损耗情况怎么样,什么时候需要更新,这些数据都不能及时获得。后来有家公司很聪明,就在风叶上加上传感器,每天都能获得这些最新的数据,包括风力的分布,风叶的损耗情况,是否需要更新,甚至风力分布也能知道。有了这些数据,就可以专心为风叶公司服务了,公司由生产商转型为服务商。原来做生产,产能过剩,利润微薄,但转型做服务,盈利就好起来。
金融、医疗、教育、传统制造业等几乎所有的行业都能参与到这个里面来。对于今天的创业者来说,人工智能的大趋势下,机器学习也好,IOT也好,都是为了提升效率的手段,更多在于找到高效获取数据的场景应用。
找到这个场景,并通过人工智能的方式获取数据,这才是大多数创业者应该好好琢磨的事情。对于某些创业者和投资人来说,这是一个真正大时代!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28