
为什么说大数据和金融科技只是在假秀恩爱
大数据、区块链、人工智能以及信息安全可以说是金融科技领域最热门的四个话题了。如果这些词不出现在金融相关领域的会议里,根本就体现不出这个会议的档次。
有人说银行做电商其实就是个笑话,本身难盈利就算了,用户体验简直就是个渣渣。但银行做电商的目的也很明确,一个是搭建自己与用户“互动”的场景,再一个便是进一步获取和深挖大数据资源。
金融科技公司就更不用说了,各类商品交易数据以及物流信息等都是十分宝贵的财富。
乍一看,大数据和金融科技之间天生就该“在一起”,也不奇怪,很多企业的老总们在各类会议上给自己的公司做广告的时,总要让金融科技和大数据站在一起秀下恩爱。“看,我们利用大数据得出了这些结论,然后利用这些结论干了那些事儿……”
但笔者总觉得,大部分的表现是:恩爱不足,尴尬有余。
虽说大数据如此重要,大家也都这么重视,但笔者不得不吐槽的是,当前的大数据产业并不发达,也不怎么健康,完全粗放式地发展,遍地鸡毛。
畸形发展的大数据做不成好先生
大数据这三个字之所以被重视,是因为大家普遍认为,数据之中有挖不尽的宝藏,数不尽的商机。确实也有企业和个人通过数据分析得到一些正确的结论。
比如,通过数据分析,我们可以发现不同年龄段人群的理财喜好,便于我们向用户推荐相关的理财产品。我们还可以通过用户浏览电商网站的习惯,经过数据分析,自动向用户推荐相关的商品广告。
但是目前所谓的大数据产业链中,畸形发展的业务模式给整个行业带来浓重而不光彩的几笔。
1、数据分析方法不科学
不过也有一些数据分析,因为方法论掌握得不好,得出的结论也就相当地不靠谱。最近,在某个国际型的会上,有个专家和他所谓的专业团队通过近几十年的数据分析得出的结论是,人口生育率低有助于经济的发展。
笔者以为这个结论不靠谱,我们只要稍作质疑就会发现这个结论站不住脚。其实这个数据里可能引出另一种结论,那就是因为经济发展了,人们的生育率才下降了。相反的,就像以前,我们总能看到得是,一些山区的农民,越穷,生的孩子却越多。
相信还有更多数据公司的方法是有问题的,得出的结论经不起推敲和检验。
另外,有一些数据公司在分析新事物时,还拿着老掉牙的数据模型和样本做参考,这本身就是对自己的专业性和对数据接收者而言就是一种误导。
2、数据获取途径不正,数据不干净
笔者曾在某个所谓的专业大数据风控微信群里看到有人提到,“如果可以拿到用户的消费数据就好了。”市面上相当一部分所谓的大数据征信公司的数据都是通过各种途径从黑客手里获取的。
3、数据被不合理甚至非法使用
常见的现象是,电话骚扰,邮箱轰炸,更有甚者将不经脱敏处理的数据随意卖出。
据国内通讯类APP触宝电话发布的最新数据显示,9521电话替代400电话成骚扰主力。仅9521开头的骚扰电话在3月至5月呈疯狂增长之势,由3月份的不足250万个,一路增长到5月份的2000万个,增幅达800%之多。由于95开头电话通常为全网呼叫中心号码,诸如银行、保险等机构都在使用,用户看到此类号码容易产生信任,进而提升接听率。可以想象这个行业到底有多少不堪入目的行为。
4、数据仅被少数机构占有
现在市面上的数据,除了那些黑产数据外,多数情况下,很多数据是掌握在极个别的机构的手里,而且是敏感数据,无法在普通人群中产生更广泛的社会价值。而技术的高级阶段便是,优势资源平民化,大众化。因此我们说现在的大数据产业还仅仅是初级阶段,未来还有很长的路要走。
相信数据行业里的问题远远不止这四点,身上如此多的坏毛病,金融科技如何放心发展呢?若这个行业继续如此,肯定不是金融科技的好先生。
针对以上四个问题,我们至少要有干净的数据、科学的数据分析方法论、安全合规的数据环境、以及更开放的数据共享。
1、干净的数据
大数据产业需要洗一洗。有媒体消息称,最近监管对数据乱象出手,开始清理行动。据称,目前有15家公司被列入调查名单,其中几家估值都超几十亿。
若想让大数据产业健康发展,还需要监管部的正确引导,以及市场的检验和矫正。
2、科学的数据分析方法论
需要更专业,可优化,可变动调节的数据模型。
3、安全合规的数据环境
监管部门及时监控和查处非法的数据抓取、使用的个人和企业,清理市场环境。而数据公司自身接受社会监督和监管部门的监管,并保证数据的安全。
4、数据脱敏,服务更多人群
需要一种更为安全的数据传输方式,让数据健康合规地在普通大众身上发挥价值。
最后,随着物联网、区块链、大数据等的融合进一步加深,届时,大数据行业将会有一个跨越式的发展,而那时的金融科技就不必担心场景的问题了。因为,那个时候,场景随处可见,随处可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27