
征信商业化 数据采集遇瓶颈
从各类信用评分到信用租车、租房、旅游等场景,过去一年中,8家个人征信机构试点动作频频。日前,国务院总理李克强做《政府工作报告》时明确提出要完善社会信用体系。这其中市场化征信机构无疑发挥重要作用,不过这些机构在数据采集方面明显存在短板,大量个人和企业数据散见于各职能部门,没有互联互通。为此,全国政协委员、中央财经大学金融学院教授贺强建议,政府向市场化征信机构开放公积金、社保、低保、婚姻状况、水电煤、交通违章罚款逾期等居民信息。究竟政府部门能否向商业征信机构开放诸多民生数据?
数据采集存短板
个人征信领域在过去一年快速发展。去年1月,央行批准芝麻信用、考拉征信等8家机构开展个人征信业务试点。
市场化个人征信机构的加入改变了以金融信贷数据作为征信评价依据的传统做法,将社交、资金往来、购物、行为习惯等数据引入到征信体系内,随后芝麻分、考拉分、华道征信猪猪分等信用评分纷纷推出,免押金住酒店、免押金租车、免押金租房、先诊疗后付费等尝试,让没有信贷记录的人群也能享受信用的便利。
在个人征信市场快速成长的背后,市场化征信机构在数据采集方面的先天不足也引起了人们的关注。一位个人征信业内人士表示,很多互联网公司数年前就已开展大数据的积累和挖掘,但大数据公司和征信机构最本质的区别是数据掌握的广泛程度。“目前一些征信机构主要是依据大数据来为用户做评估,只是掌握单一维度,比如说一个人的消费数据、支付数据、社交情况等,但一个征信机构必须综合多方面数据,对用户进行多维度评估。因此,居民数据的采集渠道是否丰富将直接影响征信机构的发展。”
征信机构难破壁垒
事实上,央行征信中心在过去十年间也在不断拓展企业和个人信用数据来源,推动工商、环保、质检、税务、法院等公共信息纳入征信系统,共采集了16个部门的17类非银行信息,包括行政处罚与奖励信息、公积金缴存信息、社保缴存和发放信息、法院判决和执行信息、缴税和欠税信息、环保处罚信息、企业资质信息等。
不过,作为完全市场化的征信机构,要想打通税务、法院、社保、公积金等众多部门,达到信息共享并不容易。一位业内人士表示,“完善社会信用体系建设,需要全社会、市场化的手段和力量来参与,也需要政府的支持和响应。短期来看政府掌握着众多居民信息数据,如果不放开,市场化征信机构就无法完善数据来源”。
此前,清华大学中国与世界研究中心发布的《征信系统对中国经济和社会影响研究》报告就曾指出,中国的企业和个人信息,散见于各职能部门,没有互联互通,数据孤岛客观存在,数据资源获取不易,对于市场化征信机构快速推进信用普惠是个很大的挑战。
政府开放数据有担忧
面对现实状况,一些征信机构开始与相关部门沟通,实现“黑名单”采集。例如深圳交警与芝麻信用、前海征信共同推进深圳市道路交通安全违法行为纳入社会征信体系建设、最高法与芝麻信用实现专线连接实时更新老赖(失信被执行人)数据等。一位试点机构人士表示,在居民信息数据采集壁垒尚未破冰之时,跟相关政府部门打通连接,实现负面名单的获取只能算是“权宜之计”。
对此,贺强建议,政府向市场化征信机构开放公积金、社保、低保、婚姻状况、水电煤、交通违章罚款逾期等居民信息,盘活政府数据。在用户授权的情况下,更好地开展征信服务,让没有信贷记录的人也能得到客观的信用评价,及时对有信用的人提供各项互联网金融服务。
而个人隐私保护问题或许是监管层对市场化征信机构最大的顾虑。央行行长助理杨子强曾表示,当前信息滥用现象较为严重,实际操作中不经授权采集信息、强制授权采用信息、一次授权终身使用信息等屡见不鲜。分析人士表示,市场化,尤其是个人征信机构还是应该先追求稳健发展,完善数据模型,与传统征信机构实现差异化发展,发掘更多场景化的征信市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13