
医疗大数据飞速发展:人工智能优越性突显
医疗行业是典型的数据密集型行业,医疗信息数据一直是医疗健康领域最重要的核心。随着数据生成和共享的速度急速增加,医疗数据加速累积。IDC曾预测截至2020年全球医疗数据量将达到40万亿GB,大约是2010年的30倍之多。可以说,信息化和医疗数据的规模和质量推动了医疗健康的进步和发展。
而医疗大数据产业的发展是由价值医疗驱动的,也就是医疗服务质量与医疗成本的双赢,其潜在的价值空间非常巨大。医疗大数据产生于具体的应用场景,服务于居民、医疗服务机构、科研机构、公共健康管理部门,医疗保险管理机构以及商保公司等。
多种场景产生医疗数据
事实上,医疗大数据产生的场景很多,有来自医院、诊所、第三方检测机构、科研机构、社保部门、药店、互联网医疗公司终端等等与医疗相关的机构。我们将其分为主要的4个类别:
1、诊疗数据。这是患者在医院、诊所等医疗机构就医过程中产生的数据。一般包括电子病历,用药选择,生化、免疫、PCR等传统检测项目结果以及基因测序等新兴检测项目结果。其中随着近年来基因组学概念的普及,基因检测逐渐兴起,其产生的检测数据增长非常之快。与之诞生了一批相关创新型企业。
2、研发数据。医药器械研发企业、研发服务外包企业、科研机构等在研发过程中会产生一批研发数据,诸如医药研发过程中临床试验的数据,科研进展等等。
3、患者数据。这类数据是由患者自身的行为和感官产生的,采集的终端一般是可穿戴设备和各类网上医疗平台。比方说通过可穿戴设备收集的体征类的健康管理数据;网上挂号问诊、网络购药、医患病友交流等网络行为产生的数据等。
4、支付和医保数据。患者支付记录、报销记录、医药流通记录等等,一切与付费方相关的审核与报销记录都会产生相关数据。
五大应用场景的医疗大数据
具有“4V性”+“医疗性”
由此众多场景产生规模巨大的诊疗数据、患者行为感官数据、研发数据、支付医保数据等,构成了质量参差不齐医疗大数据,不仅具有大数据的“4V性”,即规模大(Volume)、类型多样(Variety)、增长快(Velocity)和价值大(Value),且具有医疗领域的多态性、时序性和隐私性,同时也具有不完整性和冗余性。
医疗大数据潜在的变现能力不同。一般来讲,我们主要将其应用在5大场景,分别是:
1、临床决策支持。用于例如病情早发现并及时干预,以及实现精准医疗,精准用药等。临床决策支持系统、基因检测等能够帮助医生提高医疗服务质量。
2、慢病及健康管理。这主要包括实时监控用户的身体状况;为用户实施个性化的健康管理方案;利用数据的健康管理降低重病发病率以减少医疗支出。这是基于慢病及健康管理数据库结合远程智能监护系统和可穿戴设备等帮助个人实现健康管理。
3、医疗支付。利用医疗大数据能够减少现有支付体系的压力,降低由病因不确定导致的医疗资源浪费,此外基于患者付费和疾病数据,结合健康管理能降低保险公司赔付的成本,帮助保险公司开发新产品和提高盈利率。当然通过药品流通数据能够优化医药流通环节从而降低医药成本。
4、医药研发。通过智能数据分析系统,能在医药研发过程中减少人力、时间、物力等投入,降低药品研发成本。同时基于疾病、用药等建立数据模型,预测药品研发过程中的安全性、有效性、副作用等。
5、医疗管理。通过数据整合分析,智能应用等帮助医院运营管理。可通过多家医院的数据,建立和完善区域及跨区域的疾病防控、妇幼健康、综合监督、食品安全、血液管理、分级诊疗等,实现医疗资源合理配置。
政策和资本助力,医疗大数据公司如春笋般增长
因而,医疗大数据一直是医疗领域最重要的核心,同时也是我们当前面临的短板。之所以如此认为,主要由当前我国医疗的现状所反应。对于人口基数巨大,却存在医疗资源浪费严重、紧缺和配置不合理,以及医疗支出增长过快和医疗保险发展乏力等问题,我国的医疗大数据的市场规模非常可观,保守估计将达到千亿级,医疗大数据的可应用场景也很丰富值得深度挖掘。
然而,我国区域信息化建设尚未成规模,对医疗数据及数据源开放和共享化的程度相对较低。对此,2015年,我国国务院出台关于《促进大数据发展行动纲要》的政策,明确关于数据使用的总体要求。2016年又出台《关于促进和规范健康医疗大数据应用发展的指导意见》,正式将医疗大数据纳入国家发展,从而加速推进医疗大数据产业的形成和发展,一批与之相关的医疗数据企业如雨后春笋般增长。
除了政策支持外,资本对医疗大数据公司的信任也必不可少。我们扫描了98家明确披露融资信息的医疗大数据相关公司,据不完全统计发现,近年来有超过20家投资机构投资的医疗大数据公司超过两家及以上。
从我们统计的98家医疗大数据公司中,不难发现一个特征,即人工智能在医疗大数据领域的参与度非常之高。因为相比人脑,人工智能的优越性在于可以更高效地处理海量数据,迅速找到一些特征和规律,在图像识别上,人工智能的优越性表现的特别突出。人工智能可以利用庞大的医学知识库和数据库,建立医生的临床辅助决策系统,帮助医生进行诊断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28