
供应链如何使用大数据
大数据可能被破坏或中断,但供应链管理不在其中之列。这不是说供应链没有改变。人们如何收集和分析数据,改变了供应链的沟通方式。事实上,供应链发生了巨大变化,咨询机构德勤公司发布了一份报告,取消了线性链,声称技术中断导致了“数字供应网络的兴起”。
除了这些转变,供应链管理人员已经适应了不同的工作。就像Excel改变了供应链报告的方式,大数据平台允许专业人员专注于大项目,而不是死记硬背的任务。
工作任务和对象的变化并不表明供应链管理的变化。。相反,随着大数据的兴起,供应链管理(因为一直存在)的重要性上升。随着世界连通性的增长,零售,制造,以及物流公司都需要一个能够适应变化的管理者。
供应链管理者起到重要作用不是因为他们可以执行的任务,而是大数据仅仅实现的愿景:提高效率,降低风险和改善客户服务。AdamMussomeli就是一位供应链管理者。
不同的链,相似的转变
“我们发现,在今天的供应链世界中,有许多使用案例,我们现在大约追踪400个左右。”Adam Mussomeli说,“但是有六个主要的分类,供应链的行业人士正试图做,或在某种程度上跨越任何行业。”
Mussomel表示,第一个分类是可见性,也就是物流可见性,以便能够跟踪和知道物品何时进入,以及产品何时离开工厂。然而,同样重要的是多层次可见性,而供应链管理者能够在其供应商的工厂或其他地方看到这个问题,并能够立即解决。
“第二个分类是获得更好的需求和供应同步。”他补充说,“人们所生产的产品希望是市场需要的,但事实证明市场没有。”或者,许多高管将推动项目接收产品和销售点数据,可能帮助他们调整生产以更好地满足需求。
第三个分类,管理人员正在寻求优化他们使用的履行渠道,消费者和物流数据实现的任务。基于这些数据,供应链管理者可以调整特定产品的运输类型,取货地点或销售点。例如,水果的销售和运输策略就与电器产品不同。
后面这三个用例类别旨在通过生产工具提高效率。供应链管理者可能寻求建立一个“智能互联产品”(第四个分类),Mussomeli说。制造商,仓库经理和零售商现在可以从传感器集成的产品中受益,这些产品可以召回,并通知管理者有待更改或需要补充。
与此类似,供应链受益于增加的资产智能(第五个分类),其中连接的机器或机架可以产生数据以警告管理者条件变化。
“最后一个分类是工人安全和生产力的全部概念。”他说。““那是使用增强现实技术来帮助在仓库拣货的一个例子,或采有一些其他形式的增强现实技术告诉某人需要补充的产品。”
在供应链的每个阶段提供洞察力
无论这些用例的类别如何,每个大数据项目都旨在为供应链管理人员提供洞察力,而不是信息。换句话说,大数据项目不仅仅是收集数据,而是能够做一些事情。
在零售层面,RFID标签正在取代作为存储产品数据和提高补货能力的一种方式。而标签的产品数据优势可以与更好的库存管理功能和增加的在线销售联系起来,最近的一项研究显示,96%的服装零售商也在做同样的事情。
“如果你想想在一家特定的零售商店发生了什么,想要补充那家商店的库存,就会想知道通过那个地方销售的所有商品,”市场营销执行副总裁Karin Bursa Logility说,“这是能够补充并确保他们有计划的库存的唯一方法。”
“作为供应链专业人士,我们希望采用大数据,因为它开始创造产品之间的依赖性和相关性。”她补充说,“它帮助我们寻找模式,提高未来产品需求的可预测性。”
物流供应商也受益于大数据。2017年第三方物流研究发现,98%的受访第三方物流企业认为数据驱动的决策对未来供应链将是至关重要的,另外86%的受访者认为它将成为核心竞争力。早期采用者也比比皆是,因为端到端可视性的驱动力为具有远程信息处理的货运公司,具有高效通信的港口,甚至具有实时监控的运输线路提供了优势。
虽然制造业案例研究通常不公开,但该行业是大数据的最大受益者之一。毕竟,随着物流供应商扩大其知名度,零售商增加产品数据,制造商可以使用这些数据更接近需求驱动的供应链。
在最近的一个案例研究中,Software AG公司报告了一个价值700亿美元的家用消费包装产品,医疗保健和药品制造行业能够通过其平台推出1,800种产品75%,并实现超过4,000家物流供应商的可见性。案例研究发现,从止痛药到婴儿洗剂的任何产品都可以在数分钟内轻松追踪。“消费者甚至可以在线查看产品信息,满足他们对即时答案的需求,增强他们对公司品牌的信任。”
无论是零售商还是制造商,大数据都允许供应链通过将产品和外部数据与业务决策同步来提高服务和效率。此外,增加的可见性允许企业在不利情况下识别和调整风险。
怎么堆叠?
然而,大数据项目的功效可能不取决于用例,目标或解决的问题,而是取决于企业的数字能力。
Software AG的供应链和制造业全球行业总监Sean Riley表示:“数据项目有时是一个挑战,特别是当进入运输方面时。不是每个公司都拥有先进的远程信息处理能力的卡车。”
因此,供应链管理者被迫平衡各种不同的技术能力,甚至在内部,同时参与一个新的数据项目。为此,德勤咨询公司创建了一个“数字堆栈”,以帮助可视化的数据可以应用于洞察的各个阶段。
德勤公司将企业的数字能力分为两个部分:数字核心和数字堆栈。核心是处理大数据项目所需的基本基础设施,能够接收网络数据,将其转换为可用格式,并独立处理。同时,堆栈是指可以从大数据项目中获得的不同层次的洞察能力。
每个层建立在另一层上,因此,更多的数据是联网的,其在核心层的自动化的连接性和潜力越大。同样,企业供应链的可见性越大,他们就越可能使用数据进行决策支持,从而做出战略决策。
供应链的方式可以受益于大数据的项目是显著的但是一般来说,供应链管理者用于启动新项目的原因和方法是相同的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10