京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,拿什么终结信息乱象
高考考生即将迎来填报志愿环节,也是教育骗局最猖獗之时。个人信息泄露,早就不是新鲜事。但值得关注的是,随着移动互联技术的快速发展,信息泄露已呈全方位态势。
日前,广东省教育厅发布《广东省普通高等学校一览表》,并曝光带“广东/广州”字样的12所假冒大学。羊城晚报记者据此调查发现,与“虚假大学”“野鸡大学”联系密切的考生个人信息买卖现象依然嚣张。在以“高考名单”“招生资源”等为名的QQ群中,有群主称千元就可买到汕尾3万多名考生的信息,其所发截图的13则信息中,有10则能联系到相关考生。
此类事件不单单是诈骗案件问题,涉及到更深层次的大数据时代个人信息泄露及其防范与管控等社会性问题。
一般认为个人信息是一切可以识别自然人的信息的总和,这些信息包括了一个人生理的、心理的、智力的、个体的、社会的、经济的、文化的、家庭的等等方面。6月1日实施的《中华人民共和国网络安全法》对个人信息作了明晰的界定。然而,随着大数据技术的普及,个人信息内涵发生了极大的扩展。
大数据是指以多元形式,自许多来源搜集而来的庞大数据组。经过行业信息化建设,医疗、交通、金融等领域已经积累了许多内部数据,构成大数据资源的“存量”。
而移动互联网和物联网的发展,大大丰富了大数据的采集渠道,来自外部社交网络、可穿戴设备、车联网、物联网及政府公开信息平台的数据都成为大数据增量数据资源的主体。
当前,移动互联网的深度普及,为大数据应用提供了丰富的数据源。这些看似不相干的个人行为信息,经过大数据公司的云处理分析,却互相关联,极具社会价值和商业价值。比如,登录各种吃喝玩乐软件的账号,需要手机认证甚至实名认证,原本分散的信息就这么被串联了起来;再比如,打车软件的行车记录,结合时间就能精确定位出你的家、单位、常去地点。
这些数据对于商家来说,无异于金矿,它可让商家快速精准地找到自己的用户,把产品或服务推销出去。但另一方面,不法分子有了获取不当利益的技术手段。这也是中国地下数据黑市规模不断壮大的根本原因。个人信息趋于数据化、网络化和社会化,也使得个人信息更容易被非法获取和买卖。
一些技术先进的大数据公司隐藏在利益链条上,游走在灰色地带,通过产业链以贩卖、加工、销售数据的方式获取暴利。如某些数据公司,成立子公司,负责收购黑市数据,数据汇总后,再经过清洗和挖掘,出售给其他公司;再如,一些公司通过正规渠道和价格,获得数据接口,但调用数据的时候,会在“本地设备”上形成一个“缓存库”,当数据积累到一定程度后,就将这些“缓存库”再拿出去二次销售。
近日,监管部门正对数据乱象出手,开始清理行动,15家大数据公司被列入调查名单。这似乎是国家介入以规范数据行业的重大信号。
中国大数据产业仍处于非常早期的阶段。大数据交易乱象折射出大数据市场野蛮生长的主要矛盾,即大数据的产业化利用与个人隐私保护之间的矛盾。《网络安全法》首次在法律层面规定了个人信息保护的基本原则,明确指出,收集适用信息应经用户明示同意,不得收集无关信息,不得向他人提供个人信息,经过处理无法识别特定个人且不能复原的除外,不得非法出售个人信息。
但总体上,中国大数据产业的信息安全和数据管理体系尚未建立。迄今为止,有关公民个人信息保护的法律法规总体较为分散,尚未形成系统、有效的有关公民个人信息保护的法律框架体系,这使得在日新月异的大数据技术面前,普通民众根本无力抵御外界对个人信息的侵犯。在这种情况下,通过立法保护个人隐私数据信息应是必由之路。
在此基础上,要建设数字隐私权基础设施,推动相关立法进程打造良性的信息生态,以期建立兼顾安全与发展的数据开放、管理和信息安全保障体系。对于公民个人而言,在享受大数据时代所带来个性化服务的同时,应当加强风险防范意识,在有可能留下隐私数据的情形下要充分考虑隐私暴露而可能带来的不良后果,并采取相应的防范措施。
保护数据的隐私信息是数据搜集者和分析者应当具备的基本道德和责任。
随着监管趋严,大数据行业的整合在所难免,但总的趋势将有利于一些具有正规牌照、合法行业数据源,同时一直规范经营的优质企业脱颖而出。
根据中国信息通信研究院对国内800多家企业的调研来看,企业内部数据仍是大数据主要来源,但对外部数据的需求日益强烈。当前,有32%的企业是通过外部购买来获得数据。信息安全、开放共享等标准规范缺乏,技术安全防范和管理能力不够。如何促进大数据资源建设,提高数据质量,推动跨界融合流通,也是遏制数据黑市的关键问题之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27