京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析检察工作中的大数据运用
最高人民检察院检察长曹建明在十二届全国人大五次会议第三次全体会议上作最高人民检察院工作报告时提出,2017年,检察机关将强化大数据战略思维,深化“智慧检务”建设,实现四级检察机关司法办案、检务公开等“六大平台”全覆盖。“智慧检务”的全面建设,离不开大数据的运用。对于检察工作与大数据运用的关系,笔者认为可以从以下方面分析。
大数据运用有助于检察工作提升。从检务实践经验来看,大数据的运用,对进一步整合司法资源、规范司法行为、深化检务公开、提升工作效能、服务群众等方面都起到了积极的推动作用,有力地提升了检察工作质量。
大数据运用面临的问题。大数据运用在检务工作中虽然有广阔的应用前景,但就现状而言,检察机关的大数据运用仍有很多问题与不足。
一是数据隔离导致数据聚合度低。数据共享是运用大数据技术的基础和前提。然而,现实中数据隔离无处不在。大量数据以数据孤岛的状态被分割在各部门内部而无法被关联与聚合。目前,政法机关和行政机关的大数据应用平台多为各自建设,除数据隔离的问题外,还有硬件投入较大导致的零星建设和更新缓慢等问题。而数据不能共享导致检察机关司法办案调取涉案数据的手续庞杂、费时费力。
二是数据分析与个人主观能动的关系。大数据时代,检察工作人员办案的每一个步骤都会被大数据记载和上传,而上级机关对下级工作的考核便依据这些数据,这可能导致某些工作人员为应付上级机关的检查,工作只做表面文章,录入相关案件数据的过程中,只录入对其工作有利的数据,而不是与案件相关的所有数据,造成案件录入失实,影响检察机关公信力。
三是数据应用人才匮乏、应用水平较低。大数据既然是一种技术,意味着需要专业知识来掌控,因此,检察机关借助大数据运用进行司法办案、服务群众等工作都需要具有丰富经验的大数据分析人才支撑协助。目前,各级检察机关虽然都在积极培养自己的大数据人才,但仍存在专职人员较少、专业程度较低。
四是检务公开与检务监督管理存在矛盾。大数据时代,随着检务公开的发展,公众更容易获得案件的相关信息,也更容易在网络上就案件发表自己的看法,对检察机关的工作进行监督。一些媒体和网民为追求眼球效应,可能会发布一些不实或夸大事实的言论,甚至不惜为此造谣,严重破坏了检察机关的公信力。此外,当事人个人信息和隐私的保护工作也是检察工作中大数据运用面临的挑战之一。
大数据运用注意风险防控。虽然大数据运用仍面临以上诸多问题,但笔者认为,检察机关可以通过以下措施做到扬长避短,最大程度上发挥大数据运用的功效。
一是整合数据信息,完善数据库。建立独立、全面的数据和信息收集、存储、分析系统,建立精简使用的数据指标,在海量的数据信息里收集少而极具代表性的数据,形成检察机关的数据库资源,为检察机关案件的办理提供借鉴,并通过技术手段使得最高人民检察院对各级检察机关办理的案件中的瑕疵进行提醒和规制,提升检察机关案件办理和执法的综合能力,提升检察官整体办案水平,推进检务工作信息化、智能化。同时,深度融合各类数据平台,特别是注重积极推动政法单位数据平台之间的互联互通,实现信息共享共用,共同形成促进司法公正、提升司法效率的强大合力和良性互动,进一步实现检察机关信息化转型升级。
二是强化专业人才培养。加大数据应用能力培训力度,提升干警大数据应用能力,做到面对大数据应用设备,普通干警人人会用,优秀干警各有所长,最大程度上实现大数据充分运用。同时,整合统计、控申举报、技术等部门职能,形成数据信息采集、储存、分析的系统化管理;强化内设机构设置,设立数据、信息和情报部门;招录专业技术人才充实检察队伍,选派青年干警参加技术培训,加大对复合型检察技术专业人才的培养。
三是切实做好对当事人个人信息和隐私的保护。在大数据应用的背景下,结合国家网络安全法和检察机关办案具体情况,制定检察机关内部使用的《当事人个人信息和隐私保护规定》,采取严格的审批制度和审核制度,对当事人个人信息的采集、录入、存储、删除、销毁等阶段,通过严格的内部规定和程序来约束,防止个人信息的泄露和被侵犯。对于不遵守规定者,加大处罚力度,明确责任追究人和相应的处罚措施。同时,加强对干警培训,强调个人信息保护的重要性和个人隐私泄露的危害,从思想程度上提高干警保护个人信息安全的主观认识程度,重视工作中的每个环节,意识到个人信息和隐私的保护对案件相关人员的重要性。
四是完善电子检务公开。完善检察机关检务公开制度,确立统一的全国检察机关检务公开标准,并保留适当的弹性,允许各地区可根据自身特点和优势进行完善,实现更全面、更深层次的检务公开。完善电子检务公开平台建设,不断加大在门户网站、检察院案件信息公开网、新媒体平台上的检务公开力度,保持案件信息的实时发布与更新,对于民众的质疑及时回应,不给造谣、传谣者留有空间,真正满足社会公众对检务公开的期望,实现检务公开和检务监督的良性互动,维护检察机关公正权威的形象
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27