
在发展与治理中彰显大数据的时代价值
由2017中国国际大数据产业博览会组委会主办,中国行政体制改革研究会、工业和信息化部信息中心承办的“大数据时代:数字经济与数字治理”论坛日前在贵阳举行。来自党政机关、研究机构、知名企业的专家学者及业界人士就发展数字经济、完善数字治理交流研讨。现摘编观点如下:
邬贺铨(中国工程院原副院长):
数据使用必须承担保护的责任与义务
当前,我国数据流通与数据交易主要存在以下问题:数据源活性不够,数据中介机构还处于起步阶段;多源数据的汇集技术尤其是非结构化数据分析技术滞后;缺乏熟悉不同行业并掌握在特定领域使用数据技术的人才。很多数据源企业对数据资源的垄断意识较强,很多数据拥有者不放心让自身数据进入流通环节,担心用户隐私或企业机密泄露。
数据的价值在于融合与挖掘,数据流通、交易有利于促进数据的融合和挖掘,搞活数据从而产生效益。数据共享开放、流通交易和数据保护及数据安全对数据技术提出严峻挑战,对法律的制定及执行提出了很高要求。为此,数据使用必须承担保护的责任与义务,同时需平衡数据保护与数据的开发利用。
孙蔚敏(工信部信息中心主任):
数字经济是振兴实体经济的精兵利器
数字经济牵手传统制造,将推动传统工业快速向数字化、网络化、智能化升级,以工业云、数字工厂、机器人技术等为代表的“智能制造”将促进我国工业装备水平大幅提升、自主创新能力显著增强。数字经济也在引领农业现代化,当前,数字农业、智慧农业等新模式就是其在农业领域的实现与应用。
推进我国数字经济发展要注重加强网络设施建设,夯实数字经济基础支撑。例如,要持续深入实施网络提速降费,推动国家大数据中心建设。要深入推进“两化”融合,提升数字经济应用水平,推进大数据在研发设计、生产制造、管理决策、售后服务等全流程的深度应用,培育个性化定制、众包设计、协同制造等数据驱动的制造业新模式。要促进多方协同创新,繁荣数字经济产业生态,支持产业联盟、行业协会等组织搭建公共服务平台,构建多方协作、互利共赢的产业生态。
张 晓(中国互联网络信息中心副主任):
推动数字化转型应用
与工业经济的流水线生产不同,数字经济依托云网端,开展网络的协同和定制化的服务,具有强链接、强平台、强数据、强智能等发展特征。以强数据为例,通过采集汇聚、挖掘分析、精准画像来提高认知、驱动决策。当前,数字经济呈现产业融合化、市场全球化、技术革命化、投资成熟化、服务精细化、治理现代化等发展特征,为此,需要建立普惠共创的发展观、科学共享的数据观和包容共治的生态观,抓住工业经济向数字经济转型的机遇,推动产业革命;聚焦大连接、大平台、大数据、大智能,推动国家整体的数字化转型以及产业的数字化应用;促进数字经济时代经济和社会均衡发展,不断加强数字治理。
王 露(中国行政体制改革研究会常务副秘书长):
注重四个“结合” 向“数据强国”迈进
领导干部是落实国家大数据战略的行动主体。在国家大数据战略部署背景下,要以大数据提升国家治理能力为目标,以领导干部的现实需求为出发点,帮助领导干部把准形势、用对方法、找好标杆、取得实效,把大数据战略落到实处。
为此,要注重把政府数据开放和市场基于数据的创新结合起来。否则,大数据战略就会成为无源之水,数据开放的价值也就无从显现。要注重把大数据与国家治理创新结合起来,借助大数据实现政府负面清单、权力清单和责任清单的透明化管理,完善大数据监督和技术反腐体系。要注重把大数据与现代产业体系结合起来,包括工业大数据、新兴产业大数据、农业农村大数据等。要注重把大数据与大众创业、万众创新结合起来,培育数据密集型产业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09