
监管科技应用之贵州样本: 大数据、人工智能 助力防范互金风险
5月27日在贵阳结束的“2017中国国际大数据产业博览会”上,21世纪经济报道记者注意到,一些科技手段正成为监管部门的重要辅助。
而贵阳市,正着手联合百度金融等机构,借助人工智能、大数据、机器学习等科技力量打造“贵州金融大脑”,以监管科技对全省金融风险等领域实施并加强持续监测和预警。
实际上,监管科技(RegTech)在金融科技中的关注度正不断升温,且已成应用热门。
除中国人民银行成立金融科技委员会外,包括中国证券投资基金业协会、中国互联网金融协会以及中国支付清算协会也成立了金融科技专委会或相关研究工作组。
中国人民银行科技司司长李伟指出,新技术与金融业务交叉渗透,使金融业态复杂多变,潜在风险不容忽视。央行方面也指出,强化监管科技应用实践,利用大数据、人工智能、云计算等金融监管手段,提升跨行业、跨市场交叉性金融风险的甄别、防范和化解能力。
贵阳市人民政府副市长王玉祥在数博会上介绍,贵阳在去年5月推出了大数据防护金融风险平台,叠加区块链技术的2.0版本将在6月份发布。这一版本可覆盖传统金融和新金融机构,实施政府监管和一些商业化服务。接下来,贵阳还将与专门从事大数据金融风险控制模型的美国SAS公司合作,研发3.0版本的风险防控平台。
在贵州,金融云工程与地方金融风险防范工程均是2017年六大工程之一,而金融云建设与地方金融风险防范密切相关。
联手百度打造“金融大脑”监测系统
按照贵州省对金融云工程的建设设想,将综合运营大数据、云计算、区块链、人工智能等前沿科技,实现政府、金融监管部门、金融机构数据信息的汇聚、打通、应用,降低监管成本,防范化解风险。
目前,其一期工程在政用方面已经实现金融风险监测预警、地方金融审批监管、企业信息查询、打击非法集资举报分析等平台。商用领域则可以实现金融机构的网络舆情数据库、金融政策、金融机构黑名单查询、授信信息查询等资源共享平台。其二期将覆盖地方交易场所、小贷公司、融资担保公司的第三方存管、登记结算以及金融风险动态监测等功能。
贵州金融云三期主要是建设贵州金融大脑,实现对全省金融风险和地方金融机构经营风险的持续监测和预警,提升金融精准服务、服务“三农”和小微企业能力。
在数博会上,由百度金融联合贵州省金融办、大数据局等部门合作推出“贵州金融大脑”亮相。
百度副总裁张旭阳介绍,“贵州金融大脑”以人工智能、大数据、机器学习为技术基础,融合贵州省政务、企业、金融、互联网等多渠道数据,对中小微企业进行画像,金融机构可以此作为参考为中小微企业提供相应的融资服务。
监管科技的应用与威力
百度金融还表示,将继续探索与地方政府大数据合作模式,将科技能力复制到其他地区。
以庞大的地方国资系统为例,国资委过去在管理国企时受人员精力所限,基本只管理到集团一级,而国企集团下属子公司、孙公司层级庞大,难以覆盖。贵州基石数据科技有限公司业务负责人告诉21世纪经济报道记者,通过授权,公司对国有企业数据库中的国企行为信息进行分析和描述,对国企生产经营、改制重组、资产处置、关联交易、招投标过程中等方面的重点监控,如发现企业及关联企业潜在风险,并在事中出现异动在线监控,事后及时监管处置。还可以针对性设置重点关注模块,便于管理部门及时掌握企业动态并作出决策。
基石数据另一业务负责人表示,以互联网金融为例,除工商注册中涉及投资管理的企业外,还有许多公司以科技的名义注册但从事投资咨询事宜,这时就应当对企业在互联网上涉及投资宣传的一并纳入观察企业库,结合法院判决信息、企业工商信息等,多维度共同对互联网金融平台进行风险分级。
目前,新三板市场挂牌企业已达到11250家。一位股转系统负责人感叹,单靠人力已经管不过来,以技术为支撑的大数据监管成为可能,并且已经开始尝试应用。
腾讯云反欺诈平台方面介绍,平台投入无锡市使用近两个月,该市网络诈骗案件涉及的网址链接中,72%的中奖诈骗网址、85%的手机病毒链接、98%的仿冒银行和伪基站网址得到过滤拦截。通过与6省市的公安部门、运营商以及部分通信管理部门合作,平台在全国超过20个城市落地,仿冒公检法类诈骗的总金额下降超过一半。
21世纪经济报道记者在采访中了解到,许多监管部门都已经采用技术手段提升管理能力和水平。不过,背后仍需政府部门的数据打通和监管合力支撑。
一位中部地方国资机构人士表示,贵州作为大数据综合试验区,许多政府部门的数据打通上起到了较好的示范。但由于其所在地区政府部门的数据共享打通缺少顶层设计,部门间割裂比较明显,在大数据等技术支持监管等方面仍有较长的路要走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11