京公网安备 11010802034615号
经营许可证编号:京B2-20210330
监管科技应用之贵州样本: 大数据、人工智能 助力防范互金风险
5月27日在贵阳结束的“2017中国国际大数据产业博览会”上,21世纪经济报道记者注意到,一些科技手段正成为监管部门的重要辅助。
而贵阳市,正着手联合百度金融等机构,借助人工智能、大数据、机器学习等科技力量打造“贵州金融大脑”,以监管科技对全省金融风险等领域实施并加强持续监测和预警。
实际上,监管科技(RegTech)在金融科技中的关注度正不断升温,且已成应用热门。
除中国人民银行成立金融科技委员会外,包括中国证券投资基金业协会、中国互联网金融协会以及中国支付清算协会也成立了金融科技专委会或相关研究工作组。
中国人民银行科技司司长李伟指出,新技术与金融业务交叉渗透,使金融业态复杂多变,潜在风险不容忽视。央行方面也指出,强化监管科技应用实践,利用大数据、人工智能、云计算等金融监管手段,提升跨行业、跨市场交叉性金融风险的甄别、防范和化解能力。
贵阳市人民政府副市长王玉祥在数博会上介绍,贵阳在去年5月推出了大数据防护金融风险平台,叠加区块链技术的2.0版本将在6月份发布。这一版本可覆盖传统金融和新金融机构,实施政府监管和一些商业化服务。接下来,贵阳还将与专门从事大数据金融风险控制模型的美国SAS公司合作,研发3.0版本的风险防控平台。
在贵州,金融云工程与地方金融风险防范工程均是2017年六大工程之一,而金融云建设与地方金融风险防范密切相关。
联手百度打造“金融大脑”监测系统
按照贵州省对金融云工程的建设设想,将综合运营大数据、云计算、区块链、人工智能等前沿科技,实现政府、金融监管部门、金融机构数据信息的汇聚、打通、应用,降低监管成本,防范化解风险。
目前,其一期工程在政用方面已经实现金融风险监测预警、地方金融审批监管、企业信息查询、打击非法集资举报分析等平台。商用领域则可以实现金融机构的网络舆情数据库、金融政策、金融机构黑名单查询、授信信息查询等资源共享平台。其二期将覆盖地方交易场所、小贷公司、融资担保公司的第三方存管、登记结算以及金融风险动态监测等功能。
贵州金融云三期主要是建设贵州金融大脑,实现对全省金融风险和地方金融机构经营风险的持续监测和预警,提升金融精准服务、服务“三农”和小微企业能力。
在数博会上,由百度金融联合贵州省金融办、大数据局等部门合作推出“贵州金融大脑”亮相。
百度副总裁张旭阳介绍,“贵州金融大脑”以人工智能、大数据、机器学习为技术基础,融合贵州省政务、企业、金融、互联网等多渠道数据,对中小微企业进行画像,金融机构可以此作为参考为中小微企业提供相应的融资服务。
监管科技的应用与威力
百度金融还表示,将继续探索与地方政府大数据合作模式,将科技能力复制到其他地区。
以庞大的地方国资系统为例,国资委过去在管理国企时受人员精力所限,基本只管理到集团一级,而国企集团下属子公司、孙公司层级庞大,难以覆盖。贵州基石数据科技有限公司业务负责人告诉21世纪经济报道记者,通过授权,公司对国有企业数据库中的国企行为信息进行分析和描述,对国企生产经营、改制重组、资产处置、关联交易、招投标过程中等方面的重点监控,如发现企业及关联企业潜在风险,并在事中出现异动在线监控,事后及时监管处置。还可以针对性设置重点关注模块,便于管理部门及时掌握企业动态并作出决策。
基石数据另一业务负责人表示,以互联网金融为例,除工商注册中涉及投资管理的企业外,还有许多公司以科技的名义注册但从事投资咨询事宜,这时就应当对企业在互联网上涉及投资宣传的一并纳入观察企业库,结合法院判决信息、企业工商信息等,多维度共同对互联网金融平台进行风险分级。
目前,新三板市场挂牌企业已达到11250家。一位股转系统负责人感叹,单靠人力已经管不过来,以技术为支撑的大数据监管成为可能,并且已经开始尝试应用。
腾讯云反欺诈平台方面介绍,平台投入无锡市使用近两个月,该市网络诈骗案件涉及的网址链接中,72%的中奖诈骗网址、85%的手机病毒链接、98%的仿冒银行和伪基站网址得到过滤拦截。通过与6省市的公安部门、运营商以及部分通信管理部门合作,平台在全国超过20个城市落地,仿冒公检法类诈骗的总金额下降超过一半。
21世纪经济报道记者在采访中了解到,许多监管部门都已经采用技术手段提升管理能力和水平。不过,背后仍需政府部门的数据打通和监管合力支撑。
一位中部地方国资机构人士表示,贵州作为大数据综合试验区,许多政府部门的数据打通上起到了较好的示范。但由于其所在地区政府部门的数据共享打通缺少顶层设计,部门间割裂比较明显,在大数据等技术支持监管等方面仍有较长的路要走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12