
中国移动的大数据探索:移娃背后的秘密
“移娃在此,有何吩咐?”在北京移动的客户端点开我的客服,机器人移娃就跳了出来,为客户提供“贴心在线服务”。客服机器人“移娃”是大数据应用的一个典型案例。在大数据的应用方面,电信运营商无疑具有领先的优势,这种优势来自大量的数据积累和在此基础上的行业技术分析。作为全球用户规模最大的电信运营商,中国移动在大数据应用方面已经走在了前面。
大数据提升服务效率
作为中国移动专注客户服务的公司,中移在线服务有限公司(简称中移在线)要为8.6亿用户提供客户服务,传统的电话热线服务早已不适应现实的需求,利用互联网提供在线服务成为必然选择,而大数据和人工智能则在提升用户服务水平方面成为一个亮点。“移娃”正是中移在线联合移动研究院,在智能化服务领域研发的最新产品,她的独特优势在于中国移动积累的海量用户数据,在31个省拥有超过5万服务坐席和10多年积累的行业运营与服务能力。
中国信通院3月份发布的《中国大数据发展调查报告》(2017)显示,企业应用大数据所带来的主要效果包括实现智能决策(55.8%)、提升运营效率(48.2%)和改善风险管理(25.7%)。利用大数据提升运营效率对运营商来说立竿见影。
中移在线相关负责人告诉记者,移娃可以应用于微信、网站等互联网渠道及短信、热线等传统渠道,与客户通过自然语言进行交流,满足客户问题咨询、投诉受理、信息查询、寒暄聊天等多种需求,实现“24 小时”在线、“全天候”服务。
据介绍,该机器人已在10086微信服务号等6个全国渠道、近60个省内渠道上线,月访问量超过5000万次。2016年节约人工成本超过1.2亿元,预计今年将至少超过3亿元。
图为“移娃”服务截屏。
“移娃”梳理入库了全国31省业务知识10万条、寒暄对话20万条,自然语言识别率达到93%、准确率达到80%。”该负责人告诉记者,在大数据和机器学习技术支撑下,该产品性能和运营能力均取得行业领先地位。
中国信息通信研究院技术与标准研究所副所长何宝宏告诉记者,“电信公司在大数据方面的优势主要是数据量特别大,精确度特别高。因为它的数据都是基本实名的,来自网络的底层,所以它的数据量覆盖面广而准确。”
大数据服务精准扶贫
在大数据应用上小有斩获的中国移动并没有停止脚步。近来,中国移动正利用自身的优势将大数据运用到精准扶贫方面。
为积极响应国家精准扶贫号召,中国移动依托自身具备的信息技术优势和进村入户的服务保障体系,自主研发了精准扶贫系统,努力为农村贫困人口搭建脱贫致富的信息通路。
“精准扶贫系统于2015年底正式上线运营,经过2016年扎根国家级贫困地区、深耕系统优化建设的创业历程。目前,已在全国8个市、县落地实施,22个市、县进行部署试用,覆盖289万贫困人口,为8.5万余扶贫干部提供信息化服务。”中国移动相关工作人员告诉记者。
精准扶贫系统是集一个创新性、开放性、实效性为一体的政务信息平台,背后依靠的正是大数据分析技术。据了解,系统运行成效获得了各级领导、一线扶贫队伍和贫困群众的肯定。
该系统有两个特点:一是打造健康的扶贫数据生态,实时采集贫困动态数据,实现端到端地扁平化传递和标准化整合,助力政府不断提升扶贫工作决策水平;二是打造聚合的资源生态,搭建的开放资源平台,提供了政府、社会等各项扶贫资源、信息的统一入口,激发贫困户主动脱贫的内生动力,弥合贫困群众与互联网时代间的数字鸿沟。
中国移动相关负责人称,未来将继续加大资源投入,进一步提升针对农村地区群众的信息化服务水平,助力贫困落后地区搭上移动互联网快车,助推贫困群众享受到互联网时代发展的红利。
瞄准未来,大数据走向智能化
何宝宏认为,大数据还处于技术的早期阶段,还没有完全发展成熟。目前大数据应用的成功案例,还呈散发状,而不是大规模应用,“只有在一些典型场景,目前还是可以的”。而中国移动利用大数据提升客户服务和推进精准扶贫恰恰就是“典型场景”。
作为大数据的先行者之一,中国移动目前正利用大数据,提升用户对服务、业务、产品的体验。
对于未来大数据的发展规划,中国移动方面表示,一是服务个性化,强化大数据的个性化分析,围绕用户属性、偏好、服务场景,深入挖掘用户差异化服务诉求,结合用户的个性化服务特点,提供针对性的服务策略和服务交互内容。
二是服务一体化,依托大数据运营、分析能力,形成全网包括互联网、热线、营业厅等线上、线下渠道在内的服务一体化能力,确保用户在各个渠道一致性的体验感知,实现服务的体系化的高效协同。
三是服务智能化,通过服务大数据的挖掘与模型、算法设计,通过云计算、人工智能等先进技术引入,发挥大数据的智能服务价值,动态为客户开展智能化产品推荐、帮助客户围绕自身需求开展智能分析,通过智能服务的提供,持续为用户创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28