京公网安备 11010802034615号
经营许可证编号:京B2-20210330
孔子的“因材施教”何时才能实现?教育专家拿出了大数据
每一个孩子都是独特的,但是我们能针对他们进行真正个性化、差异化的教学吗?
在数学考试中,两个同样得了90分的考生,他们的能力完全一样吗?
老师布置作业:完成第一题到第十题。可真的是所有学生都有必要完成这10道题吗?
日前,记者参加了一场由学海智通云承办的“基于数据分析的初中生自适应学习应用研究”全国教育技术研究规划课题开题会,浙江大学教育学院学术委员会主任、数字化学习研究所所长、教育技术学博导张剑平教授,与在场的20多所学校老师面对面交流时,提出了这样的观点:在互联网时代,老师们的教学不仅要凭经验,更要充分利用学习行为数据的科学分析。
“不得不承认,对于学生,我们知道得太少。”这是卡耐基·梅隆大学教育学院的一句经典的口号,同时也是美国十大教育类年会关注度最高的议题。类似的思考在我们国家的教育领域同样存在。
张剑平教授认为,人工智能+大数据正在部分领域赶超人类,像语音识别技术的应用已越来越普及,中文的语音识别准确率已达到97%。但现代信息技术对于教育教学变革的促进和影响,无论在中国还是美国,都还是在起步阶段,有效利用大数据促进个性化学习的研究与应用,尚有待于研究人员、技术人员和一线教师的共同努力。
比如根据传统的教学模式,我们会认为,成绩相同的学生,能力大体相仿。但如果借用大数据的分析手段,学生的差异性就会清晰展现。如果对同为两个90分的考生进行分析,我们会发现,第一个学生也许更多的是依靠出色的逻辑思维,而另一名同学是依靠出色的记忆力,两个人孩子的能力完全不一样。
基于大数据的学习分析,可以让教育教学真正面对每一个独立的个体,大数据能够让我们更全面地看待学生的发展,发现以往考试成绩所反映不了的深层次问题。老师能对这一情况及时掌握,通过新技术来帮助我们对每一个学生的个性和特点都有了充分的了解,就会有针对性地布置作业,帮助学生弥补能力上的不足,进而实现那个孔子时代就提出来绵延2000多年的梦想——因材施教。
在教学实践中,老师们应该尽可能地用大数据来读懂每一个孩子。
以国际上著名的"Knewton"适应性教学平台为例,该平台上的教学资源能够适应每个学生的个性化差异,可以根据学生的学习表现,判断当前的题目的难度是否过大,是否太容易,还是刚刚好。基于判断实时地改变题目的难度。学生可以按照自己的节奏来控制学习进度,而不会受到周围其他学生的行为影响。然后,系统会给教师一个反馈,告知哪个学生在哪个方面有困难,同时给出全班学生的整体分析数据。如A同学做对了第二题,系统马上可以告诉他,他可以跳过第四题和第八题,这是因为,二、四、八三道题目在考查同样的知识点,如果都做则是简单重复。如果B同学做错了第三题,那么系统就会提示他强化式练习第六题和第九题,这是因为基于大数据的分析,第三题做错的同学很有可能在第六题和第九题也出现错误。而有针对性地反复训练,是十分必要的。
现代信息技术解放了一些具有创新精神的老师,使他们节省了大量重复的劳动而将精力集中在教师的核心任务,这就是技术解放力量。从这个意义上说,再好的技术都不能取代老师,而只是对教育和教师角色进行了重新定义。
在互联网时代,信息技术可以将知识汇聚与个性化推荐结合,通过对学习资源的深度整合,知识导航,推荐引擎,个性评价等更具专业性的深层服务,优化传统教学模式,让课堂减少灌输,增加互动,这无疑是教育的一大进步。传统的课堂也因此将实现功能上的转变,成为交流学习成果和释疑解惑的场所,通过线上线下相结合的混合型模式,实现线上线下一体化(O2O)的个性化学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27