京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1、问题与数据
为了探讨基因X突变与恶性肿瘤Y不同组织类型发生风险的关系,某医生设计了一项病例对照研究。该医生纳入所在科室一年收治的145名该恶性肿瘤患者,并从医院体检数据库中随机选择了100名未患该肿瘤的体检者作为对照。相关信息整理成表1:
表1 各病例组织类型与突变情况
变量赋值情况如表2:
表2 变量及变量赋值情况
2、对数据结构的分析
该研究中,“病例”与“对照”的关系不再是简单的“患病”与“不患病”,而是病例分为四类(本例中包含对照组共四类),且各类别无次序关系。或者说,因变量Y不再是二分类的,而是无序多分类的。通过无序多分类的Logistic回归分析可以将三种不同组织类型的病例分别与对照组进行对比,分别得到基因X突变与三种肿瘤组织类型的暴露-风险关系。
3、SPSS分析方法
A. 数据录入SPSS
若数据格式如表1所示,则首先在SPSS变量视图(Variable View)中新建三个变量:ID代表患者编号,Y代表组织类型,X代表是否突变,赋值参考表2.
然后在数据视图(Data View)中录入数据。
B. 选择Analyze → Regression → Multinomial Logistic
C. 选项设置
将变量Y选入因变量(Dependent)位置,变量X选入因子(Factors)位置。如果自变量中还有连续型变量,则需要放入协变量(Covariate)位置。由于因变量Y有多个分类,而无序多分类Logistic回归的原理是先指定一个类别为参考类别,然后将其他类别分别与参考类别对比。故需点击Reference Category设置参考类别(本例中作为参考类别的为对照组)。
SPSS默认选择因变量赋值中按升序排列后最后类别(即赋值最大者)为参考类别(即对照组),而本研究中参考类别Y赋值为0,故可以点击First Category 或直接在Custom中输入0,点击Continue。
如果要分析的自变量不止一个,且要分析不同自变量之间的交互作用,则需点击Model进行设置,否则无需进行设置。
Statistics、Criteria等维持默认设置即可。点击OK,SPSS生成分析结果。
4、结果解读
Case Processing Summary 对数据进行了总结。
Model Fitting Information 给出的模型拟合好坏的信息。其中-2Log Likelihood值越小越好,从结果中可以看出,加入自变量后的模型比只有常数项的模型拟合要好(27.311<80.234),似然比检验(Likelihood Ratio Tests)结果显示这种模型的改善是有统计学意义的(P<0.001),说明自变量X的加入是有统计学意义的。
Likelihood Ratio Tests 与Model Fitting Information给出的信息一致,不再赘述。
Parameter Estimates表格给出了参数估计值。首先在表格的注释a说明了此次回归所使用的参考类别为“对照”,即数据中的对照组。表中给出了三种组织类型肿瘤分别与对照相比的自变量X的回归系数,且三个系数均有统计学意义。
以腺癌组为例,X=0相比于X=1,系数值Exp(B)为0.068,说明基因X未突变者患腺癌的风险是突变者患腺癌风险的0.068倍,将0.068取倒数即为基因X突变者患腺癌风险是未突变者的1/0.068=14.71倍,P(Sig.)<0.001,说明差异有统计学意义。其他两组系数解释同。如果想直接得到X=1 对比 X=0的结果,可以将自变量X当作协变量放入Covariate中,而不作为因子进行分析。或者将自变量反过来,如突变阳性时,X=0;突变阴性时,X=1。
5、结果汇总
基因X突变患者相比于未突变患者,其发生某恶性肿瘤类型为腺癌、鳞癌和大细胞癌的风险分别为14.71(1/0.068,P<0.001),3.66(1/0.273,P=0.002),8.93(1/0.112,P<0.001)倍,均有统计学意义。
6、总结与拓展
1)SPSS结果中会给出Pseudo R-Square,即伪R方,或假R方,与普通线性回归中衡量模型拟合好坏的R方概念类似。但由于Logistic回归中因变量为分类变量,其计算方法与普通线性回归中的R方不同,其值一般较小,可不予关注。
2)无序多分类Logistic回归并非只用于病例对照研究中,只要分析时指定对照,且与指定的对照进行比较得出的回归结果可以说明想探究的问题即可。如在本研究中,若研究者关注的不是基因X突变对不同类别的肿瘤发生的风险情况,而是基因X突变对三种类别肿瘤的发生风险是否有差异,以及差异的大小,那么就不需要纳入对照。
在本例分析中虽然我们可以在数值上看出基因X突变对三种类别肿瘤的发生风险是不同的,但无法从统计学上进行判断,因为这种差异并没有进行统计学检验。要探讨这种差异,可以将参考类别选为三种类别肿瘤中的一中,如想比较腺癌和鳞癌的差异,则可选鳞癌组为对照,这样得出的回归系数即为基因X突变引起两种类别肿瘤发生风险的比值。
3)实际应用中可能也需要调整一些混杂因素变量,若变量为分类型变量则放入因子位置,若为连续型变量则放入协变量位置,其分析和解释与要分析的暴露变量是一致的。
4)可以把无序多分类Logistic回归看作是多个二分类Logistic回归的同时实现。
7、无序多分类Logistic回归适用条件
1)不限于病例对照类型;
2)因变量为分类变量,分类大于两个,且各分类之间并无次序关系。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析师一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
业务数据分析师 CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27