
我们不是大数据的人质
钱钟书先生写过一篇妙文,说从整个历史来看,古代其实相当于人类的小孩子时期,先前是幼稚的,经过了千百年的长进,慢慢才到了现代。时代越是古旧,它的历史就越短,时代越是在后,它积累的阅历越是深厚,年龄就越多。所以,总结来说,我们反而是我们祖父的前辈,上古三代反不如现代悠久古老。
现代人完全可以这样对待我们的历史和传统。我们的时代正在用这样的一种方式瓦解经典,时间再也不是淘洗作品的永恒标准,因为传统无法解释现代人的经验,历史也无法应对高速变化的现实,共识已经瓦解成了个人主义的炮灰,经典备受质疑,经典之中也许并无圣人之言,很可能都是无用的废话——如果按照现如今大数据的标准,所有的经典都应该抛弃在垃圾堆,因为其中撰写的都是无用之言和可疑之言,缺乏合理的大数据的论证。
这话说得有些滑稽,但确实是切中要害的现实概括:大数据神话正在横扫一切领域。原本我们以为大数据只能在科学等实证领域兴风作浪,后来才发现,大数据神话的野心是掌控一切现实,就连人文学科,也同样需要大数据的支撑,没有大数据支撑的文章都是耍流氓。以前,我们写文章会习惯性地写,苏格拉底说过,未经省察的人生是不值得过的。现在写作就会说,根据统计数据显示,或者根据某份权威的调查报告的统计数字,未经省察的人生幸福指数只有20%-40%左右。我们时代最流行的阅读是别人替你读书,把书的内容划重点,归纳和总结出各种所谓的“干货”和教条,然后塞给你,你马上就觉得自己变成了博学多知的百科全书——这就是现在“逻辑思维”正在推广的学习方式。我们渴望的知识不再是经过时间的淘洗依然存在的经典,我们最想获得的知识是维基百科。
按照现在最时髦的理论——其实就是流行的《未来简史》《大数据时代》之类通俗读物——人类所有的知识都可以归纳为某种算法。比如在中世纪,获得知识的公式是:知识=经文 逻辑。简单说就是,如果你先想要知道某个问题的答案,中世纪的人会阅读相关经文,然后用中世纪逻辑来理解经文的确切含义。
而进入了科学革命时代之后,这个算法的公式就是:知识=实证数据 数学。以地球的形状为例,我们就要搜集相关的实证数据,观察太阳、月亮和行星,积累了足够的观测值,再用数学工具加以分析,利用三角学进行推断。
很显然,以上的两个公式就算是正确的,帮助我们解决了很多问题,但仍然具有很大的缺陷,它无法处理我们的人生价值和意义问题。所以,某些以创造公式为己任的人,又费尽脑汁创造了一个获得伦理知识的公式:知识=体验 敏感性。就是说,如果我们想知道任何道德问题的答案,我们需要连接到自己的内心体验,并以最大的敏感性来观察它。
但是这个就很模糊了,体验不能用数据测量,敏感性更是无迹可循,唯一依靠的只有自己的感觉。如何对自己的感觉进行量化,或者用流行的大数据进行统计呢?如果这些都属模糊的数据,这种知识如何获得?所以在伦理学领域,或者在我们寻找人生意义的问题上,无法用一个统一的公式获得共识——幸好如此,否则我们都利用这种算法计算我们的感受,那人生还有什么意外的乐趣?
我不知道大数据时代到来对生活影响有多大。我只知道,任何数据都无法解决我人生各个阶段的意义,更无法解决抑郁、自杀、快乐、苦闷等情绪上的问题。换句话说,千万不要被大数据洗脑和挟持,我们不是大数据的人质,大数据应该是我们解决某种问题的方式。好像在每一个时代都会有这样一个走火入魔的时期,我们有上帝和神学统治一切的时期,然后是启蒙理性统治的时代,现在是大数据时代。但它们都不能成为简化人生的公式和算法。就算人工智能可以使用各种算法赢得未来,就算机器战胜了人的大脑,它只能说明人类的大脑比机器聪明,而不是相反,更不会让我们对其顶礼膜拜。对我们而言,无论是人工智能,还是大数据,它们只能成为人类寻找生命意义的工具,而不是目的。它们代替不了人类的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13