京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据“沉睡”制约大数据产业发展
小到敲击键盘、迈开步子,大到征信系统、政务记录,数据已成这个时代最具活跃的要素和最有价值的“信息矿产”。无论“互联网+”、物联网还是智能制造,数据触角无所不在,影响着几乎所有产业生态未来走向。
中国信息通信研究院发布的《大数据白皮书(2016)》显示,未来5年,全球数据量将呈指数级增长,但庞大的总量并不意味着可完全有效的开发利用。据了解,除了技术瓶颈外,开放和合作的障碍正在让大量数据陷入“沉睡”。数据原材料的缺乏与信息“孤岛”的形成,严重制约着大数据产业的发展。
壁垒让数据“沉睡”
国际数据公司(IDC)的数据显示,按目前发展趋势,预计2020年全球大数据总存储量将达到44ZB(1ZB约等于10000亿GB)。我国数据总量为909EB(1EB约等于1000亿GB),占全球数据总量的13%。
目前数据层面的壁垒普遍存在于政企、企业间,业内人士表示,针对现状普遍是通过购买和“爬虫”(自动获取网页内容的手段)的方式获取,但数据存在不准确、不全和非结构化等问题。
“相比于行业间的数据流通,政企之间的壁垒更是一块沉睡数据的"集聚地"。”中关村(000931,股吧)大数据产业联盟秘书长赵国栋说,“目前一些上市数据如股权占比、科研数据都是价值密度比较高的"沉睡"数据。”
据中国信息通信研究院2015年对国内800多家企业的调研来看, 企业内部数据仍是大数据的主要来源。当前有32%的企业通过外部购买数据;只有18%的企业使用政府开放数据。
业内人士表示,大数据时代的数据资源广泛散布于政府、行业、企业三个子系统中,其中,信息数据资源80%以上掌握在各级政府部门手里。与此同时,区域部门间基本实现共享的省级地方仅占13%,区域部门间少量实现共享的地市和区县仅占32%和28%,信息共享和业务协同在地市和区县进展缓慢。
“如果更多数据可以开放,将会对产业转型、政务和公共服务效率提升等大有裨益。”上海至信普林科技有限公司总经理顾敏洁说,“比如中国人民银行上海总部自2006年起公开金融信息后,催生了一批金融信息咨询服务公司,其中包括5家上市公司。”
三大原因致数据孤岛“造成数据孤岛的成因是数据割据、技术壁垒和标准缺失。”赵国栋说。观念问题是主观意愿缺失的症结。“政府部门由于缺乏企业间基于共同利益开发这样的主观能动性,导致数据开放滞后。除了政府部门,一些大企业也应该认识到数据合理开放可以造就更好的行业生态价值。”
外部管理规范、法规的缺失也使部分主体对开放数据保持顾虑。“目前如果只遵循"谁的数据谁负责"这一简单的准则,要调动政府部门开放数据的积极性比较困难。”DT大数据产业创新研究院院长陈新河说。
除了主观意愿,技术和标准也是一道“硬门槛”。“比如目前信息共享的安全问题。公共云的运维工作面临着一些新的安全风险和挑战。计算环境从本地到云端的自身安全性是提高了,但由于公共云的运维管理工作必须通过互联网完成,和传统IT环境运维有很大不同,容易造成管理员权限被劫持攻击,造成运维管理账号和凭证泄露等问题。”顾敏洁说。
目前开放的数据同样因格式标准缺失成了“开放的孤岛”。公布类似停车位数量、开放非标准化的图表等形式的数据都是不可机读的。这类“伪开放”并没有真正整合数据的价值。“不同行业数据整合必然需要标准化的数据格式,比如从卫生、人口的角度用数据对"人"进行的描述就是不一样的。”全国信息安全标准化技术委员会大数据标准工作组成员张群说。
“因此目前要开放的应该是底层数据,而不仅提供根据数据分析出来的结果或产品。”业内专家表示,这类数据在技术上应该有其标准形式,可以被计算机抓取、调用,而且在法律上也是可以进行各种使用的。
开放整合数据需围绕应用场景
要打通数据孤岛,一方面是技术上的革新和标准化的推进,同时包括数据安全领域建设。“在物联网时代,需要从政府等层面推进包括身份识别、信息安全系统等庞大的安全体系建设。”赵国栋说。
“目前全国信息技术标准化技术委员会已推进获批了6项大数据领域的标准,包括了大数据技术参考模型、数据能力成熟度评价模型标准等。”张群说。
另一方面,在法律维度,立法推进的前提是明确数据权属。对此,赵国栋建议,可以参照土地管理的做法,将数据权属划分为所有权、处置权、使用权和收益权。“例如处置权应归国家,规定归档、删除的各种条件等。只有权属清楚才能推动法律保护。”
政府数据开放也并非一蹴而就,需要循序渐进。业内人士认为,不涉及隐私和安全的数据可以率先开放,比如气象这类数据。同时政府部门和行业协会可以推动统一数据平台的建设,改变目前碎片化的现状。
杭州市经济和信息化委云计算与大数据产业处处长黄左彦说:“杭州整合数据、搭建平台过程中的经验就是以项目为突破,目前类似"5G"车联网项目、城市数据大脑等都是以交通为突破点。由政府主导政务数据开放共享,企业自带资金深度合作开发,其中包括数据交流。”
“目前观念上有一个原则是被忽视的:即"开放是常规,封闭才是例外"。”陈新河说,“政企间或者政府牵头整合数据仍应围绕应用场景、项目工程来,否则目前"唤醒"的数据早晚也会重新"落满灰尘"。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12