京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据“沉睡” 制约大数据产业发展
小到敲击键盘、迈开步子,大到征信系统、政务记录,数据已成这个时代最活跃的要素和最有价值的“信息矿产”。无论“互联网+”、物联网还是智能制造,数据的触角几乎无远弗届,影响着几乎所有产业生态未来的走向。
据中国信息通信研究院发布的《大数据白皮书(2016)》分析,未来五年,全球数据量将呈指数级增长。但庞大的总量却并不意味着完全有效的开发利用。《经济参考报》记者采访了解到,除了技术瓶颈外,开放和合作的障碍正在让大量数据陷入“沉睡”。数据原材料的缺乏与信息“孤岛”的形成,严重制约着大数据产业的发展。
壁垒让数据“沉睡”
国际数据公司(IDC)的数据显示,按目前发展趋势,预计2020年全球大数据总存储量将达到44ZB(1ZB约等于10000亿GB)。我国数据总量为909EB(1EB约等于1000亿GB),占全球数据总量的13%。
目前数据层面的壁垒普遍存在于政企、企业间,业内人士表示针对现状普遍是通过购买和“爬虫”(自动获取网页内容的手段)的方式获取,但数据存在不准确、不全和非结构化等问题。
“相比于行业间的数据流通,政企之间的壁垒更是一块沉睡数据的‘集聚地’。”中关村大数据产业联盟秘书长赵国栋说,“目前一些上市数据如股权占比、科研数据都是价值密度比较高的沉睡数据。”
据中国信息通信研究院2015年对国内800多家企业的调研来看, 企业内部数据仍是大数据的主要来源。当前有32%的企业通过外部购买数据;只有18%的企业使用政府开放数据。
业内人士指出,大数据时代的数据资源广泛散布于政府、行业、企业三个子系统中,其中,信息数据资源80%以上掌握在各级政府部门手里。而与此同时,区域部门间基本实现共享的省级地方仅占13%,区域部门间少量实现共享的地市和区县仅占32%和28%,信息共享和业务协同在地市和区县进展缓慢。
“如果更多数据可以开放,将会对产业转型、政务和公共服务效率提升等大有裨益。”上海至信普林科技有限公司总经理顾敏洁说,“比如中国人民银行上海总部自2006年起公开金融信息后,催生了一批金融信息咨询服务公司,其中还有5家上市公司,拉动的就业人数也非常可观。”
数据割据、技术壁垒和标准缺失形成数据孤岛
“数据孤岛的成因主要有三个,数据割据、技术壁垒和标准缺失。”赵国栋说。观念问题是主观意愿缺失的症结。“政府部门由于缺乏企业间基于共同利益开发这样的主观能动性,导致数据开放滞后。除了政府部门,一些大企业也应该认识到数据合理开放可以造就更好的社会和行业生态价值。”
外部管理规范、法规的缺失也使部分主体对开放数据保持顾虑。“目前如果只遵循‘谁的数据谁负责’这一简单的准则,要调动政府部门开放数据的积极性比较困难。”DT大数据产业创新研究院院长陈新河说。
除了主观意愿,技术和标准也是一道“硬门槛”。“比如目前信息共享的安全问题。公共云的运维工作面临着一些新的安全风险和挑战。计算环境从本地到云端的自身安全性是提高了,但由于公共云的运维管理工作必须通过互联网完成,和传统IT环境运维有很大不同,容易造成管理员权限被劫持攻击,造成运维管理账号和凭证泄露等问题。”顾敏洁说。
目前开放的数据同样因为格式标准缺失成了“开放的孤岛”。公布类似停车位数量、开放非标准化的图表等形式的数据都是不可机读的。这类“伪开放”并没有真正整合数据的价值。“不同行业数据整合必然需要标准化的数据格式,比如从卫生、人口的角度用数据对‘人’进行的描述就是不一样的。”全国信息安全标准化技术委员会大数据标准工作组成员张群说。
“因此目前要开放的应该是底层数据,而不仅提供根据数据分析出来的结果或产品。”业内专家表示,这类数据在技术上应该有其标准形式,可以被计算机抓取、调用,而且在法律上也是可以进行各种使用的。
开放整合数据需围绕应用场景
要打通数据孤岛,一方面是技术上的革新和标准化的推进,同时包括数据安全领域建设。“在物联网时代,需要从政府等层面推进包括身份识别、信息安全系统等庞大的安全体系建设。”赵国栋说。
“目前全国信息技术标准化技术委员会已推进获批了6项大数据领域的标准,包括了大数据技术参考模型、数据能力成熟度评价模型标准等。”张群说。
另一方面,在法律维度,立法推进的前提是明确数据权属。对此,赵国栋建议,可以参照土地管理的做法,将数据权属划分为所有权、处置权、使用权和收益权。“例如处置权应归国家,规定归档、删除的各种条件等。只有权属清楚才能推动法律保护。”
政府数据开放也并非一蹴而就,需要循序渐进。业内人士普遍认为,不涉及隐私和安全的数据可以率先开放,比如气象这类数据。同时政府部门和行业协会可以推动统一数据平台的建设,改变目前碎片化的现状。
杭州市经信委云计算与大数据产业处处长黄左彦说:“杭州整合数据、搭建平台过程中的经验就是以项目为突破,目前类似‘5G’车联网项目、城市数据大脑等都是以交通为突破点。由政府主导政务数据开放共享,企业自带资金深度合作开发,其中包括数据交流。”
“目前观念上有一个原则是被忽视的:即‘开放是常规,封闭才是例外’。”陈新河说,“政企间或者政府牵头整合数据仍应围绕应用场景、项目工程来,否则目前‘唤醒’的数据早晚也会重新‘落满灰尘’。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27