
大数据型企业建设指南:大数据能给我带来什么
在以往的文章中,我们不止一次的提到过数据对企业的重要性。对现代企业来说,数据的意义不亚于第一次工业革 命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。事实上,对于数据的深度挖掘和应用正是工业4.0的核心。在具体应用中,广 告自动化购买、用户画像这些基于大数据的企业级应用都已经获得了广泛的认同。
对于互联网企业来说,数据常常贯穿了整个企业的运营过程,支撑着企业的正常运转,但大多数企业的数据资产依然长年累月的堆积在服务器里,并不产生什么价值,如同被埋进地下的金子。
如何将这些埋进地里的金子挖出来、产生价值?这个问题摆在了企业面前。傅志华在三年前加入360,同时开始推动360内部的数据系统搭建的工作。傅志华长期从事数据工作,并且同时在高校兼任讲师。他认为,企业的数据系统构建的首要目标是“因地制宜”,从需求和应用场景出发,“倒推”出一个最适合自己企业的数据系统。
傅志华见证、参与了整个360的企业数据系统的建设,从数据采集的标准化、数据仓库、主机和数据统计工具的建设,再到运营分析的数据体系的指标化……目前,360大数据中心拥有五十多人的团队,利用360在运营中产生的数据进行数据采集、数据预处理、数据仓库的建设、数据统计、大数据的分析、数据挖掘、数据可视化等工作,利用企业在运转中产生的各种数据进行多个层次的应用:
业务运营监控
精细化运营
精准营 销
用户生命周期管理
市场传播
经营分析
战略分析
不同层次的应用需要不同的部门产生的数据,越高层次的应用对数据的要求就越高,也越能够对企业产生巨大的影响。
企业数据系统的构建对于企业来说最大的意义就是打破数据孤岛,使企业的数据资产“活”起来,为企业产生更多价值。傅志华认为,数据对于企业的价值体现在三点中:
首先,作为一种资源,数据的保有和利用就意味着企业拥有的“数据资产”。许多企业以数据资产为核心开发了大量产品,拥有个性化推荐能力的新闻阅读客户端和购物软件都是其中的佼佼者;
其次,对数据的深度挖掘和利用业务运营监控和精细化运营成为可能。如前文提到的利用数据进行用户生命管理、经营分析和战略分析也成为企业建立数据系统的目的之一;
最后一点,数据的利用也同时能够实实在在地增加企业的业绩和收入。无论是利用数据系统开发产品、进行营 销或是提升管理效率,都可以为企业创造更多价值和业绩。傅志华表示,在引入个性化推荐算法之后,360手机助手应用下载的转化率得到了非常显著的提升。
那么,企业建立数据系统就是势在必行的吗?傅志华认为,这个问题需要根据实际情况进行考虑。对于互联网、金融和通信等行业,由于先天就拥有大量数据,同时数据应用更加成熟,对企业业绩的增加几乎可以说是立竿见影,所以这些行业更适合主动建立一个完善的数据系统;另一些行业则需要更多成本才能发挥数据的价值,甚至需要从数据的采集开始从头做起,所以在较为传统的零售、餐饮行业大数据应用的发展稍慢。
同时,傅志华也再次强调了“因地制宜”的重要性。尤其是对于中小型企业来说,建立一个完善的数据系统需要投入大量的人力、物力,对于规模较小的企业可以说是一笔大开支了。他建议这些企业利用第三方数据工具进行数据的采集、统计和处理,根据自己的业务诉求来进行企业的数据化建设。
相比之前提到的各种问题,傅志华认为,观念的转变才是企业数据化面临的最大困难。
大数据能够给企业带来什么样的价值?我的企业适不适合大数据?我的企业哪里用得上大数据?很多企业的决策者对这些问题并不了解,缺乏“数据意识”,不习惯通过数据进行经营和决策。
观念的转变需要时间,也需要市场的培养。在大数据时代,数据的意义不亚于第一次工业革 命后的煤炭、钢铁,或是现代工业的电力、石油甚至自动化技术。企业只有跟上时代的步伐才能够在血腥的市场搏杀中生存下来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29