
大数据智能化助力淘品牌韩都衣舍2016年盈利预计翻番
都衣舍的野心早已不再是做一个淘品牌了,而它转型“品牌商+服务商”的战略似乎也初见成效。
日前,韩都衣舍发布了未经审计的2016年业绩预告,预计全年归属挂牌公司股东净利润在6000万到7500万之间,比上年同期的3385万元增长一倍左右。这也是韩都衣舍挂牌新三板之后首次披露业绩。
在流量红利衰减,电商整体增速放缓的背景下,这家成立于2006年的淘品牌却保持了强劲增长。财务数据显示,韩都2014年营收达8.3亿元,净利润亏损3756万元。到2015年,营收为12.6亿元,净利转亏为盈,为3321万元。以2016年预计盈利额计算,连续两年的净利润增速达到180%和100%。
在网购风向标天猫“双十一”中,韩都衣舍也表现不赖。2016年,韩都衣舍旗舰店双十一销售额为3.62亿元,在女装类目中排名第五。而据按照交易指数排名,它仅次于优衣库和ONLY,排名第三,成为前十位中唯一上榜的淘品牌。
《2015-2016年度中国服装电商行业报告》显示,服装电商发展已进入成熟期,国内外的传统服装厂牌纷纷上线,对原生的淘品牌形成冲击。最近三年,淘品牌虽然营收增加,但利润率逐年下降。
韩都衣舍的业绩亮点从何而来?他们在业绩预告中给出的关键词是:结构优化、商业智能作用显现、资源整合力提升。在正式年报出炉之前,36氪采访了韩都衣舍副总经理胡近东,了解这些抽象字眼背后的具体内涵。
通过检验的“二级生态”
尽管天猫、京东们已经成为百货市场般深入日常的所在,但对一个试图开店的小品牌而言,运营依然是难以攻克的难题。且不论初期订单量微小无法获得和供应链的议价权,就连发货的包装盒都贵了几分。
这也是资深淘品牌韩都衣舍看到的机会——基于电商们的“一级生态”,利用自身在数据系统和运营能力上的积累,为“小而美”的品牌们提供解决方案,形成以韩都衣舍为轴心的“二级生态”。
如今的韩都衣舍身兼两角。品牌商韩都衣舍拥有18个自有品牌和4个合资品牌,这依然是母公司韩都衣舍赖以起家的核心业务,贡献了营收的大头。多品牌战略也意味着不可能均衡用力,而是抓大放小,及时汰换,比如2016年韩都就停掉旗下一家包袋品牌,更专注于服装条线。
而服务商韩都衣舍也在2016全面发力——成立全资子公司韩都动力,并将韩都衣舍的系统能力和运营能力导入其中,作为服务其他品牌的实体。据了解,韩都收取的佣金在品牌营业额的5%到10%之间。“代运营并不限于卖货,还包括提升综合的品牌力。”胡近东说。
目前,韩都动力的运营品牌超过60个,从初创品牌、传统大牌,到国际品牌、网红品牌不一而足。财报显示,2015年韩都衣舍初涉代运营业务时,其贡献额不足总收入的1%。而2016年,代运营业务有显著增长,但仍处于“战略投入期”。
“代运营的显著效果就是利润在增速比销售收入增长更快。” 韩都衣舍创始人兼CEO赵迎光在解释2016年净利润的突出表现时说。
“小组制”场外版和数据智能
转型服务商对于韩都来说似乎顺理成章,这与其“小组制”的生产组织方式密切相关。一个三人小组就可以担负起一个单品的全程运营,独立核算,责权利统一,后端的摄影、生产、储运、技术、客服、财务部门则为每一个小组提供支持和服务。
将这种逻辑扩大,就有了韩都内部的多品牌和多品类,再进一步扩大,就可以为外部的新品牌继续提供服务。“新品牌的创业团队就可以专注在设计和产品研发上,把控好一个品牌竞争力的核心。”胡近东说。
以十分关键的供应链能力为例,定位于“快时尚”,奉行“多款少量、快速翻单”的韩都衣舍多年来培育出了一套完善的柔性供应链体系——小而灵活的生产线,最低20件起订,在销售旺季(例如双十一)还可以快速追单。据悉,韩都拥有60多家这样的核心供应商,100多家外围供应商。
接下来是如何利用大数据和智能系统匹配和优化产能,实现供应链的协同。依照惯例,韩都衣舍在一季产品上新后根据销售情况做出“爆、旺、平、滞”的排名,平均用时7到12天,之后对爆款和旺款进行追单。智能系统则在持续缩短这个周期,保证有限的产品季内,尽可能减少机会损失。
基于大数据的智能系统也是韩都衣舍近年来最花功夫的地方——每年在IT开发上的投入达到4000万。它除了支持供应链体系,还在仓储、物流、摄影环节的效率提升上功不可没。
“韩都衣舍把自己定位成互联网公司,数据和系统能力是我们的优势。”胡近东说。
“新零售”语境下,这似乎值得深思。在一次公开的行业大会上,赵迎光总结了线上品牌突破天花板的三种路径:全力押注主品牌、向线下实体店延伸、做生态运营商。毫无疑问,同在淘宝上生长起来的品牌们选择了不同的道路——茵曼、裂帛等进军线下,韩都衣舍则坚定地走上第三条道路,并进一步强化互联网属性和数据优势。
至少从目前来看,韩都衣舍交出了更令人满意的答卷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28