京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据智能化助力淘品牌韩都衣舍2016年盈利预计翻番
都衣舍的野心早已不再是做一个淘品牌了,而它转型“品牌商+服务商”的战略似乎也初见成效。
日前,韩都衣舍发布了未经审计的2016年业绩预告,预计全年归属挂牌公司股东净利润在6000万到7500万之间,比上年同期的3385万元增长一倍左右。这也是韩都衣舍挂牌新三板之后首次披露业绩。
在流量红利衰减,电商整体增速放缓的背景下,这家成立于2006年的淘品牌却保持了强劲增长。财务数据显示,韩都2014年营收达8.3亿元,净利润亏损3756万元。到2015年,营收为12.6亿元,净利转亏为盈,为3321万元。以2016年预计盈利额计算,连续两年的净利润增速达到180%和100%。
在网购风向标天猫“双十一”中,韩都衣舍也表现不赖。2016年,韩都衣舍旗舰店双十一销售额为3.62亿元,在女装类目中排名第五。而据按照交易指数排名,它仅次于优衣库和ONLY,排名第三,成为前十位中唯一上榜的淘品牌。
《2015-2016年度中国服装电商行业报告》显示,服装电商发展已进入成熟期,国内外的传统服装厂牌纷纷上线,对原生的淘品牌形成冲击。最近三年,淘品牌虽然营收增加,但利润率逐年下降。
韩都衣舍的业绩亮点从何而来?他们在业绩预告中给出的关键词是:结构优化、商业智能作用显现、资源整合力提升。在正式年报出炉之前,36氪采访了韩都衣舍副总经理胡近东,了解这些抽象字眼背后的具体内涵。
通过检验的“二级生态”
尽管天猫、京东们已经成为百货市场般深入日常的所在,但对一个试图开店的小品牌而言,运营依然是难以攻克的难题。且不论初期订单量微小无法获得和供应链的议价权,就连发货的包装盒都贵了几分。
这也是资深淘品牌韩都衣舍看到的机会——基于电商们的“一级生态”,利用自身在数据系统和运营能力上的积累,为“小而美”的品牌们提供解决方案,形成以韩都衣舍为轴心的“二级生态”。
如今的韩都衣舍身兼两角。品牌商韩都衣舍拥有18个自有品牌和4个合资品牌,这依然是母公司韩都衣舍赖以起家的核心业务,贡献了营收的大头。多品牌战略也意味着不可能均衡用力,而是抓大放小,及时汰换,比如2016年韩都就停掉旗下一家包袋品牌,更专注于服装条线。
而服务商韩都衣舍也在2016全面发力——成立全资子公司韩都动力,并将韩都衣舍的系统能力和运营能力导入其中,作为服务其他品牌的实体。据了解,韩都收取的佣金在品牌营业额的5%到10%之间。“代运营并不限于卖货,还包括提升综合的品牌力。”胡近东说。
目前,韩都动力的运营品牌超过60个,从初创品牌、传统大牌,到国际品牌、网红品牌不一而足。财报显示,2015年韩都衣舍初涉代运营业务时,其贡献额不足总收入的1%。而2016年,代运营业务有显著增长,但仍处于“战略投入期”。
“代运营的显著效果就是利润在增速比销售收入增长更快。” 韩都衣舍创始人兼CEO赵迎光在解释2016年净利润的突出表现时说。
“小组制”场外版和数据智能
转型服务商对于韩都来说似乎顺理成章,这与其“小组制”的生产组织方式密切相关。一个三人小组就可以担负起一个单品的全程运营,独立核算,责权利统一,后端的摄影、生产、储运、技术、客服、财务部门则为每一个小组提供支持和服务。
将这种逻辑扩大,就有了韩都内部的多品牌和多品类,再进一步扩大,就可以为外部的新品牌继续提供服务。“新品牌的创业团队就可以专注在设计和产品研发上,把控好一个品牌竞争力的核心。”胡近东说。
以十分关键的供应链能力为例,定位于“快时尚”,奉行“多款少量、快速翻单”的韩都衣舍多年来培育出了一套完善的柔性供应链体系——小而灵活的生产线,最低20件起订,在销售旺季(例如双十一)还可以快速追单。据悉,韩都拥有60多家这样的核心供应商,100多家外围供应商。
接下来是如何利用大数据和智能系统匹配和优化产能,实现供应链的协同。依照惯例,韩都衣舍在一季产品上新后根据销售情况做出“爆、旺、平、滞”的排名,平均用时7到12天,之后对爆款和旺款进行追单。智能系统则在持续缩短这个周期,保证有限的产品季内,尽可能减少机会损失。
基于大数据的智能系统也是韩都衣舍近年来最花功夫的地方——每年在IT开发上的投入达到4000万。它除了支持供应链体系,还在仓储、物流、摄影环节的效率提升上功不可没。
“韩都衣舍把自己定位成互联网公司,数据和系统能力是我们的优势。”胡近东说。
“新零售”语境下,这似乎值得深思。在一次公开的行业大会上,赵迎光总结了线上品牌突破天花板的三种路径:全力押注主品牌、向线下实体店延伸、做生态运营商。毫无疑问,同在淘宝上生长起来的品牌们选择了不同的道路——茵曼、裂帛等进军线下,韩都衣舍则坚定地走上第三条道路,并进一步强化互联网属性和数据优势。
至少从目前来看,韩都衣舍交出了更令人满意的答卷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22