
玩转大数据 把握这个专业引领先机
我们正处在一个以网络化和数字化为基本特征的新经济时代,大数据应用是这个时代最热门的词汇之一,无论在申请和使用信用卡、坐飞机出行、租车还是预订酒店房间,大数据已经渗透到各个领域,对我们的日常生活产生着潜移默化的影响。业内人士表示,大数据的作用正在被不断挖掘,并引起越来越多的重视,其中一个很明显的佐证就是,国内的高校在去年首次设立了相关专业,培养对口人才。在教育部直属高校的新增审批本科专业里,满眼都是“大数据”“网络安全”这样的词汇。此类相关专业占了该条目下新专业的1/3左右。
【就业前景】
大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握大数据技术、懂管理、有大数据应用经验的大数据建设专业队伍。目前大数据相关人才的欠缺将阻碍大数据市场发展。大数据的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。
一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等等。具有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。
未来,大数据将会出现约超过百万的人才缺口,在各个行业大数据中高端人才都会成为最炙手可热的人才,涵盖了大数据的数据开发工程师、大数据分析师、数据架构师、大数据后台开发工程师、算法工程师等多个方向,因此需要高校和企业共同努力去培养和挖掘。
【专业介绍】
培养大数据科学与工程领域的复合型高级技术人才。毕业生具有信息科学、管理科学和数据科学基础知识与基本技能,掌握大数据科学与技术所需要的计算机、网络、数据编码、数据处理等相关学科的基本理论和基本知识,熟练掌握大数据采集、存储、处理与分析、传输与应用等技术,具备大数据工程项目的系统集成能力、应用软件设计和开发能力,具有一定的大数据科学研究能力及数据科学家岗位的基本能力与素质。
简单来说,一个数据分析高级技术人员应该具备如下的技能和使命:
1.能够从庞杂多样的数据集当中搜集、处理、提取有价值的信息。2.能够理解、具体化假想的概念,并能够有效和其他非数据科学家沟通。3.能够做出数据驱动的解决方案来为企业产生收益、减少成本,甚至拯救世界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10