
充分挖掘信访大数据的价值
信访大数据的价值在于信访调研、访情预判、绩效考核、管理决策、记录历史。
日前,最高人民法院院长周强会见出席第三届世界互联网大会智慧法院暨网络法治论坛客人时指出,在全球信息化深入发展的大背景下,世界各国法院都在努力推动信息技术在法院工作中的应用。如何与时俱进,摸准时代的脉搏,搭上人工智能的快车,这是智慧型法院建设需要思考的问题。如何借助信访大数据将信访工作引领上快车道,并借助人工智能推动信访工作变革,这是新时期信访工作面临的重大课题。
信访之所以产生,一个重要原因在于,在当事人看来没有感受到公平正义。因此,要实现让每一个当事人都感受到公平正义的司法目标,信访人的每一次信访就成为了有价值的数据。因此,基于这些信访数据的分析就成为了信访工作升级换代的核心要素。在一定程度上讲,抓住了信访大数据,就抓住了新时期信访工作的关键点。建立在信访大数据基础上的人工智能分析,能为信访苗头预判、信访管理决策、调查研究等方面提供精准的个案攻克战术、科学的工作战略,创造出符合司法规律的优质高效型的司法格局。
信访大数据首要价值在于信访调研。传统的信访调研,所依托的样本数据常常不完整、缺乏接谈过程、接谈成效等重要环节,所作事实判断往往缺乏客观性。囿于经历的有限性,研究人员往往通过抽样分析进行调研,这样得出的结论偏差难免。信访大数据要求接访人将每一次来访的信访人的年龄、性别、诉求及理由、工作单位、诉讼史、信访史、案件案由、投诉事项、接谈过程、化解方案、化解效果等等项目完整录入数据库。在完整且客观的信访数据基础上,调研人员能依托人工智能,进行“全样本数据”分析,使得结论最大可能地接近信访规律。
其次,信访大数据的价值在于访情预判。凡事预则立,不预则废。如果我们能从源头上对信访做预判,实现未雨绸缪,将信访消灭在萌芽状态,那么司法工作秩序将能升级到全新的格局。完备的信访大数据库加人工智能,让全样本分析的实现成为可能。在此基础上,信访人信息、信访事由和诉求之间的相关性预知就能更科学。信访数据一旦和案件管理系统产生交互,从立案环节就能对信访苗头作出初步判断,并在后面的审判、执行等程序中步步提醒,最大程度实现信访预判和提醒,最终实现谋略先于未动,转变以往的事后补救为事前预警防范。
第三,信访大数据的价值在于绩效考核。在各个司法岗位上,客观公平合理的绩效考核机制对激发干警的主观能动性不可或缺。用案件量、结案量等数字来考核审判法官显得粗糙。科学的激励机制除了考虑数量外,还需考虑质量。衡量质量好坏的其中一个标准就是当事人是否在司法过程中感受到了公平正义。信访部门作为司法服务的“售后”或者投诉部门,是未感知到公平正义的当事人的集散地,更是抱怨和意见的“回收站”。建立信访大数据库,将当事人每一次来访都完整记录入库后,我们可以测算出当事人对各具体到某位司法工作人员或业务部门的不满意度,以在司法服务质量上为绩效考核贡献依据。另外,以前对接访员的考核停留在接访数量上,而有了大数据库后,接访的时间长短、接访的成效也加入到了考核因素中来,能较为全面地从数量和质量上对接访人员进行考核。
第四,信访大数据的价值还在于管理决策。传统的管理主要依托经验积累和对事实的调研,以求得科学管理、精准决策。由于收集的信访信息缺乏完整性和客观性,以及分析技术匮乏,传统信访管理中经验就占据了重要位置。但很多经验的传承存在着不全面、不准确的问题,这就使得信访管理一直停留在粗糙阶段。信访数据库的建设以信访信息客观、详实、完备为目标,以量的积累突破经验的局限性,最终为科学的调研和精准的预判提供了坚实的判断基础。这样,信访管理决策层不论是在信访个案中寻找攻克战术、还是在整体信访管理工作中制定科学的工作战略,都能实现管理决策科学化、精准化,为立案、审判和执行工作全方位服务,最终创造出符合司法规律的优质高效型司法格局。
最后,信访大数据的价值还在于记录历史。今天就是明天的历史,站在未来的角度来看,现在信访人的每一次信访都是历史。以法制史明鉴,能启迪未来的法律人审慎思考我们的民族究竟适合一个什么样的司法,启发未来学者探究符合国情的司法路径和方向。信访史是法制史中最原生态的一环,它最真实地反映了司法现状,将法律全球化中法律移植带来的不良反应、司法过程中反映出的制度漏洞和法律局限性暴露无遗。但遗憾的是,信访档案在传统的信访工作中是残缺的。信访大数据库的价值就在于,将信访人每一次来访都全方位记录在案,包括接访过程中图片、视频和音频资料都入库。这些资料在将来都是法制史资料,它为未来法律人对法律秩序的探索、司法公正内涵的准确诠释、法律制度的完善都大有裨益。
时下,“人工智能”和“大数据”等新概念层出不穷,这已经预示着我们已经进入一个高速发展的全新时代。从认识论上接受这些新概念、新事物,并吸收科技智能时代带来的福利,掌握并熟练操作新的工具,这将使我们的司法服务实现跨越式发展。在智慧法院建设的大潮中,以信访大数据和人工智能为依托的信访工作模式应该成为每一个司法机关的标配。增配和培养技术人才,开发和完善数据库储存软件,积累并充分挖掘信访大数据资源背后的潜在价值,研究和运用数据分析成果为信访调研、预判和管理决策提供依据……如此,将能最大程度地满足人民日益升级的优质高效司法需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28