
2017年十大战略科技发展趋势,你值得关注
如今技术创新的速度比以往任何时候都快。就在几年前,云技术被认为是最前沿的。现在,不仅互联网企业都在部署云计算,传统企业也纷纷向云计算转型。对于未来科技发展趋势,我们依然充满期待。
全球信息技术研究和顾问公司Gartner曾提出十项将在2016年影响多数企业机构战略科技趋势的研究结果。包括:终端网络(Device Mesh)、环境用户体验(Ambient User Experience)、3D打印材料、万物联网信息、高等机器学习、自主代理与物体(Autonomous Agents and Things)、自适应安全架构(Adaptive Security Architecture)、高级系统架构(Advanced System Architecture)、网络应用程序与服务架构、物联网平台。
根据Gartner的定义,战略科技趋势是指可能对企业机构带来重大影响的技术趋势。而重大影响因素包括:可能对业务、终端用户或IT层面造成颠覆性效果;需要大量投入资金;或是太晚采用相关技术便会导致风险。此外,这些技术也足以影响企业机构的长期规划、方案与活动。
随着数据科学技术和方法的不断演化,对于大多数企业具有战略性意义的科技发展趋势也在不断更新。
Gartner副总裁兼院士级分析师David Cearley表示:‘2017年十大战略科技发展的前三大趋势(人工智能和高级机器学习、智能应用、智能物件)体现了‘智能无处不在’,数据科学技术和方法向着高级机器学习和人工智能发展,进而将智能物理和基于软件的系统应用于学习和自适应编程。紧随其后的三个趋势(虚拟和增强现实、数字孪生、区块链和分布式分类帐)以数字世界为主,物理和数字世界正在变得密不可分。最后四个趋势(会话系统、格网应用和服务架构、数字技术平台、自适应安全架构)则提供了智能数字格网所需的平台和服务网络。’
2017年的十大战略科技发展趋势包括:
人工智能和高级机器学习,
智能应用,
智能物件,
虚拟和增强现实,
数字孪生,
区块链,
分布式分类帐,
会话系统,
格网应用和服务架构,
数字技术平台,
自适应安全架构。
不难看出,在这十大战略科技发展趋势中,‘智能’一词尤其夺人眼球。Cearley指出:‘未来10年,几乎每个应用和服务都将包含一定的人工智能。这将成为一种长期发展趋势,不断发展和壮大人工智能和机器学习应用和服务。’人工智能(AI)和高级机器学习(ML)等更先进的技术将超越基于规则的传统算法,创造能够理解、学习、预测、适应,甚至可以自主操作的系统。
最近大受追捧的‘区块链’也被列为2017年十大战略科技发展趋势之一,区块链(Blockchain)是一种分布式分类账(Distributed Ledgers),价值交换交易(以比特币或其他代币计算)按顺序分组成块。每个块链接到前一个块,使用加密的信任和保证机制,在对等网络进行记录。区块链和分布式账本概念正在获得人们的关注,它们为改变行业运营模式带来了希望。虽然目前的卖点还是以金融服务行业为主,但是其应用前景广泛,包括:音乐发行、身份验证、所有权登记和供应链。
Cearley表示:‘分布式分类帐将极有可能引发变革,但大多数计划仍处于初期的Alpha或Beta测试阶段。’
颇具人气的VR体验让人有一种身临其境的感觉,Gartner将这项体验所涉及的VR技术也列为十大战略科技发展趋势之一。虚拟现实(VR)和增强现实(AR)技术都属于沉浸式技术,将改变人与人、人与软件系统的互动方式。Cearley认为:‘VR和AR功能将与数字格网合并,形成一个更加无缝的设备系统,提供超级个性化和互相关联的应用和服务,精心编排用户收到的信息流。融合多个移动、可穿戴设备、物联网与大量传感器的环境将扩展沉浸式应用,使其远胜单独和单人体验。房间和空间将与物体互动,最终它们将通过格网连接并与沉浸式虚拟世界一起工作。’
与2016年强调实体与虚拟世界的融合以及数字网络崛起的战略科技发展趋势相比,Gartner在2017年十大战略科技发展趋势预测中,更加强调智能化、数字化变革将会对人类和技术带来广泛影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10