京公网安备 11010802034615号
经营许可证编号:京B2-20210330
治理“假货之都”需要大数据打假
白天鬼城,夜里鬼市,福建莆田因为大量产出仿冒名牌运动鞋,不仅是江湖游医之乡,而且也是“假鞋之都”。近日,在阿里巴巴的倡议下,“大数据打假联盟”在杭州成立。阿里巴巴与首期入盟的约20个创始成员发布《共同行动纲领》,依托大数据和互联网技术,用大数据赋能打假生态,凝聚最大社会共识,定期公布打假信息。
假冒伪劣泛滥,一直是我们时代的典型问题,不仅严重侵犯消费者权益,也严重损害中国制造的对外形象。面对假货问题,在过去,我们的思维一向是“往回看”,也就是满足于归责,似乎把责任归到某个部门某个企业的身上,就解决了假货问题。有人说假货问题应该归咎于监管不力,有人说假货问题应该归咎于电商平台,大家为此争吵不休。结果,当然根本无助于假货问题的解决。
就以阿里平台为例,打假绝不像我们想象的那么简单,只要把理解的尺度,放大到10亿件的海量商品,就能够想象其中的困难。更重要的是,你打掉一个店铺,对方很可能又会注册10个,就像割韭菜。真正要打假,必须深入像莆田“假鞋之都”这样的线下假货货源地,这就需要地方相关部门的通力配合。如果执法人员反而建议摊贩仿哪种鞋好卖,“假鞋之都”焉能不变态繁荣?
改变思维模式“向前看”,联盟所有可以团结的力量,大家不再互相指责而是互相协作,共同直面假货问题,用大数据的打假技术和专业化的打假资源,让打假更有力、更高效、更透明,这才是解决问题的办法。此番全球首个大数据打假联盟的成立,特别是Dulux、LV、施华洛世奇等国际大牌的加入,不仅说明“苦假货久矣”,也说明对阿里倡议的大数据打假联盟的信心,打假需要合作,而不是指责。
打假从来不是哪个部门或者哪个企业的事情,虽然在很多人看来,是阿里这样的电商平台给假货提供了方便,但你要知道的是,在没有电商平台之前,假货一直都是十分泛滥的,如果你现在去某些农村的集贸市场,你会发现那几乎就是假货大聚会,这些可都是线下交易。你更要知道的是,所有的假货都产自线下实体工厂,它们都是有监管者的,像“假鞋之都”这样的地方,不可能只存在一天两天。
在电商平台,消费者识别假货应该是更容易的,而且有纠纷解决机制和事后的差评机制,之所以假货仍旧存在,其中很大一个原因就是确实有人图便宜知假买假。他们不是所谓的“职业打假人”,但他们是基于自身利益的“职业买假人”。有需求就会有供给,正如线下的假货基地是阿里封不掉的,那些图便宜购买假货的需求也是阿里封不掉的。
一方面,打击假货,不可能只靠电商平台,而是需要全民参与,彻底消除假货,有待全民打假意识的提高。另一方面,打击假货属于堵的一面,彻底消除假货同样需要疏。给中小企业更宽松的经营环境,提升“中国质造”的水平,才是治本之道。
大数据打假是基于数据的打假,是线上的打假,也是更高效的打假,大数据打假联盟因此非常值得期待。但是,“假鞋之都”这样的假货源头主要在线下,当务之急,必须让线下的打假行动,也借助大数据的威力,实现线上线下的联动。惟其如此,大数据打假,才能真正让假货无处遁形,“假鞋之都”才不至于久治不愈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28