
治理“假货之都”需要大数据打假
白天鬼城,夜里鬼市,福建莆田因为大量产出仿冒名牌运动鞋,不仅是江湖游医之乡,而且也是“假鞋之都”。近日,在阿里巴巴的倡议下,“大数据打假联盟”在杭州成立。阿里巴巴与首期入盟的约20个创始成员发布《共同行动纲领》,依托大数据和互联网技术,用大数据赋能打假生态,凝聚最大社会共识,定期公布打假信息。
假冒伪劣泛滥,一直是我们时代的典型问题,不仅严重侵犯消费者权益,也严重损害中国制造的对外形象。面对假货问题,在过去,我们的思维一向是“往回看”,也就是满足于归责,似乎把责任归到某个部门某个企业的身上,就解决了假货问题。有人说假货问题应该归咎于监管不力,有人说假货问题应该归咎于电商平台,大家为此争吵不休。结果,当然根本无助于假货问题的解决。
就以阿里平台为例,打假绝不像我们想象的那么简单,只要把理解的尺度,放大到10亿件的海量商品,就能够想象其中的困难。更重要的是,你打掉一个店铺,对方很可能又会注册10个,就像割韭菜。真正要打假,必须深入像莆田“假鞋之都”这样的线下假货货源地,这就需要地方相关部门的通力配合。如果执法人员反而建议摊贩仿哪种鞋好卖,“假鞋之都”焉能不变态繁荣?
改变思维模式“向前看”,联盟所有可以团结的力量,大家不再互相指责而是互相协作,共同直面假货问题,用大数据的打假技术和专业化的打假资源,让打假更有力、更高效、更透明,这才是解决问题的办法。此番全球首个大数据打假联盟的成立,特别是Dulux、LV、施华洛世奇等国际大牌的加入,不仅说明“苦假货久矣”,也说明对阿里倡议的大数据打假联盟的信心,打假需要合作,而不是指责。
打假从来不是哪个部门或者哪个企业的事情,虽然在很多人看来,是阿里这样的电商平台给假货提供了方便,但你要知道的是,在没有电商平台之前,假货一直都是十分泛滥的,如果你现在去某些农村的集贸市场,你会发现那几乎就是假货大聚会,这些可都是线下交易。你更要知道的是,所有的假货都产自线下实体工厂,它们都是有监管者的,像“假鞋之都”这样的地方,不可能只存在一天两天。
在电商平台,消费者识别假货应该是更容易的,而且有纠纷解决机制和事后的差评机制,之所以假货仍旧存在,其中很大一个原因就是确实有人图便宜知假买假。他们不是所谓的“职业打假人”,但他们是基于自身利益的“职业买假人”。有需求就会有供给,正如线下的假货基地是阿里封不掉的,那些图便宜购买假货的需求也是阿里封不掉的。
一方面,打击假货,不可能只靠电商平台,而是需要全民参与,彻底消除假货,有待全民打假意识的提高。另一方面,打击假货属于堵的一面,彻底消除假货同样需要疏。给中小企业更宽松的经营环境,提升“中国质造”的水平,才是治本之道。
大数据打假是基于数据的打假,是线上的打假,也是更高效的打假,大数据打假联盟因此非常值得期待。但是,“假鞋之都”这样的假货源头主要在线下,当务之急,必须让线下的打假行动,也借助大数据的威力,实现线上线下的联动。惟其如此,大数据打假,才能真正让假货无处遁形,“假鞋之都”才不至于久治不愈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22