
衡量营销影响的5项重要指标
如今,提到市场营销几乎不可避免要谈到数据。在中国这个体量巨大的市场,有关市场、客户、销售和服务的信息浩如烟海,使得营销人员接触的各类数据更多。如果不能加以利用,那拥有再多的数据也是毫无意义。而且,数据不仅用于传达营销举措和结果,还用于精细调整营销方案……成功利用数据的关键在于跳出标准框架的限制。
很多营销工具只是使用相同的预定指标制定一个框架,或者需要开发人员才可进行自定义。但是,模板框架只能显示正在发生的状况,而不容许你提出下一个问题、探寻原因和进行发掘。为清晰说明一项市场营销方案的实际影响,你需要提出创造性的问题并能够在你的数据中追求新的理论,因为业务是不断变化的。
考虑到这一点,以下是能够衡量营销影响的五种方法——以及可同时使用的一些专业技巧。
1. 测量内容之间的相互作用,以精细调整商机评估模型:
人人都谈内容,因为好的内容策略能将营销方案提升到新的高度。但是,重要的是超出计算页面视图和网络流量的范围限制,将下载、互动时间、搜索量、社会共享、转化率等相互作用的指标纳入囊中,并在预期不偏离销售漏斗的情况下审视指标。你可以使用相互作用的内容为基础来制定和微调商机评估模型。关键是避免在一个模型内跟踪所有营销内容。数据驱动成功的关键在于各部门与平台之间的数据共享,以理解整个生态系统。
2. 通过融合数据理解社交媒体的最佳用途:
多年以来,社交媒体已成为纯粹的狂欢会。过去在社交媒体上我们只是宣布我们有一批追随者而已,但那种日子已经一去不复返了。尤其在中国,微信与微博是最常用的两大社交应用和信息获取平台。越来越多的企业想运用这两大新媒体平台巨大的用户基数和流量来进行营销推广活动。面对点阅量、转发量、粉丝量等复杂的数据统计,尤其有必要进行数据融合和汇总。例如,如果你使用社交媒体作为一种客户服务工具,你需要观察响应率和问题解决率,可能还需要将它与客户满意度挂钩。但是,即使和其它应用工具一起使用时,观察和理解社交媒体影响力的唯一方式仍是将其与目标置于同一背景之下……就是说将社交影响的数据拿出标准框架并与外部资源融合。
3. 观察活动的整体参与度:
矛盾的是,活动在数字时代继续为客户提供独特的体验,并构成营销组合的一部分,但是量化活动的影响力通常比较困难。要想获得尽可能多的信息,应考虑活动的整体参与度,衡量社交活动、现场预约、展位光顾量、代表的交谈次数、捕捉的商机等等。然后,再看这些数字与网络流量和销售量等指标之间的关系,即拥有在一处显示多种数据资源的能力。
4. 了解商机的业务转化率:
商机生成率是衡量最多的营销指标。当商机发生变化时,大家都想了解其中的原因。你应确保考虑到从点击率到转化率、人均客户成本、商机质量和内容之间的相互作用——以及这些指标之间的关系。此外,你还应当清楚如何在你的销售渠道或销售力量中分配这些商机。对一些大公司来说,这可能意味着成千上万位销售人员,因此使用可显示整体情况和分配详情的图解非常重要。通常情况下,商机变化的原因只能在底层数据中发现,而非数据概览。
5. 以小见大——显示整个漏斗:
如上所述,衡量影响的唯一关键可能就是将其置于背景之中考虑。能够纵观整个营销漏斗是成为一位真正的数据驱动型营销人员的唯一途径,因为透过它可以看到某项活动对下游环节……乃至底线的影响。这一点必须通过互动的方式进行,从而让所有人都能驱动和追求他们自己的原因理论。
综上所述,不要局限于将所有不同数据置于同一个框架之中,或者仅在营销漏斗停止时停止。做到真正的数据驱动意味着再前进几步,并且通常是在动态中进行的。
所有这些可能会让人不知所措,但请不要气馁。如果上述任一指标在目前尚未被衡量或关联,你最好马上开始。举例来说,当你需要快速的做活动分析来分析数据库中关于不同地域、来源、行业和其它分类的数据的时候。有了Tableau交互数据可视化功能,你能搜索数据从而理解数据趋势走向并设计新的活动,监测你活动中的成功之处,并通过分析衡量标准使你的营销数据最大化的得到利用。通过市场、活动、目标客户群的人口统计来将收益分类,可以极大地优化你的活动组织和市场分割。使用地域筛选,可逐月细分你的收入,理清在这些地区哪些产品更受欢迎。
慢慢地,你在收集、跟踪、融合和匹配不同指标以理解营销影响的方面就会做得更好。有一点需要明确:这个使用不同数据设计灵活和切实有用的新框架是一个互动的过程。在这个过程中,你作为一位现代营销人员应当不断前进,无论你的起点如何。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14