京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据并非新原油
在营销领域,这是一件激动人心的事。人们甚至用简单的等式来表示:大数据=大动力=大利润。这一寓意很好地描绘了那些不太好理解的东西。而在过去的两年里,我已经反反复复听到人们把大数据和原油相提并论。
不过,从生产层面来看,大数据和原油是毫无可比性。信息本质上是可再生资源,任何数据的存储并不仅仅存在于表面之下,而且它们还会日复一日地被大量创造出来。从数据中寻找价值更像是一种精耕细作的过程,而不仅仅是提取和精炼。这些都与原油的生产大相径庭。
但尽管如此,在某些情况下,这种类比却是有用的。
“大数据就像原油”这一想法也许能引发出一些亟需的危机感。人类在原油领域的经验是丰富的:财富的创造需要平衡资源日渐稀缺、唯利是图所造成的血腥冲突,以及严峻的气候危机等因素。而新的数据经济领域,正如同石油行业一样瞬息万变(也可能是危机四伏),如果我们真的要向这一领域迈出第一步,深谋远虑至关重要!事实上,我们已经看到了“数据泄露”的发生,大量私人数据由于疏忽被泄露出来。因此,我们距离危险的数据操作还会远吗?我们距离“数据污染”带来的长远影响还会远吗?
私人数据,是一个可以适用“数据-原油”模型的领域,但也是我们要谨慎前行的领域。如今,在数据世界中,大量利润是通过使用人工生成的信息得到的。人们的浏览习惯、聊天记录、移动轨迹以及地点定位——所有这些东西都被商业化了。这些都是极为私人化的数据,尽管通常情况下人们并不这样认为。在这里,或许我们可以将私人数据与化石燃料进行一种行之有效的比较:原油是从死去很久的微生物身体中压缩得来的,而私人数据则是通过对人们私人生活碎片的压榨而产生的。这些数据实际是人类经验的一个浓缩。
这种将数据重新嵌进人类生活的做法影响至深。我认为,使数据变得更加人性化可以带来更为长远的商业价值,这可以从以下三件事做起:
首先,人们要理解和体察数据所有权。当社会中的每个人都能够生成大量数据时,个体却很难意识到这一过程,或加以运用。当人们获得工具可以对自己的数据进行存储、可视化处理和研究的时候,就会理解这些信息的价值和作用。推而广之,在一个广泛的范围内,这种数据认知的提高,可以为每个人带来更好的决策——既可以减少数据被滥用的可能性,又可以用来解决诸如灾难应变、癌症诊断、疾病传播等重大问题。
其次,我们需要对数据及其行为准则进行更为公开的对话探讨。去年,许多新兴企业都让我为他们的私人数据投资提出建议,但却没有一家企业提到被提取数据的人们的权利。这是我们需要改变的。我推测,那些将自己定位为“数据人道主义”的公司会获得巨大利润,而且,由于消费者数据权力意识的提高,这种“数据人道主义”最终可能成为未来的商业标准。
最后,我们需要改变的是公众看待数据的方式,也就是说,数据并不是新原油,而是一种完完全全的新型资源。为了促成这种改变,我们要在社会上推行深层次的数据认知。巧的是,人类有一种针对此类广泛的文化变革的机制:人文学科。我们应鼓励艺术家、小说家、演员和诗人都发挥积极作用,促使我们朝着利润而前行、随着数据而进步。这样或许能够避免大数据时代发生类似过去原油所引发的错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03