
大数据和智能电网的关系
大数据技术在智能电网中具有广阔的应用前景,报告从负荷预测、源网荷协同、网架规划三个方面进行论述。
1、负荷波动及新能源出力预测
负荷预测作为电网电量管理系统的重要组成部分,其预测误差的大小直接影响电网运行的安全性及可靠性,较大的预测误差会给电网运行带来较高的风险。现阶段负荷预测主要是通过负荷历史数据,利用相似日或者其他算法预测负荷的大小,短期预测精度较高,中长期精度较差。随着电网采集数据范围增加,利用大数据技术可以将气象信息、用户作息规律、宏观经济指标等不同种类的数据,通过抽象的量化指标表征与负荷之间的关系,实现对负荷变化趋势更为精确的感知,提高预测精度。
分布式发电的不断接入,特别是新能源渗透率的不断增加,打破了原来电网运行管理的模式,不但需要考虑负荷侧的波动,还要计及新能源出力的间歇性。在我国,新能源接入主要受制于两个因素:(1)新能源大多分布在电网末端远离负荷中心,网架结构较为脆弱,从而造成电网接纳能力较弱;(2)新能源预测误差较大,目前风电出力预测日前和实时的误差分别为20%、5%左右,这样就会给电网调度带来较大的挑战。由于新能源较大的预测误差,往往需要在大型新能源基地周边建立配套的大型常规能源作为旋转备用,以弥补新能源预测精度方面的不足。作为备用的常规电源,由于担负着较重的旋转备用,长期不能工作在最佳运行点,将造成其发电效率低以及能源的浪费。利用大数据技术,可以有效提高新能源出力的预测精度,如丹麦的维斯塔斯风力技术集团,在风电出力预测时采用了IBM的大数据解决方案,在风电出力预测时加入了地理位置、气象报告、潮汐相位、卫星图像等结构化及非结构化的海量数据,从而优化了风力涡轮机布局,提高风电发电及预测效率,获得了较为可观的经济效益。
2、源网荷协同调度
利用大数据技术可以有效降低新能源预测误差,但这对于新能源出力固有的波动性,传统的调度方法通过增加系统的旋转备用来解决。在电力市场不断完善的背景下,可以不通过调节常规电源的出力,而是利用市场手段,使得一部分用户主动削减或者增加一部分负荷去平衡发电侧出力的变化,即通过需求侧管理实现系统电量平衡。若要达到网源荷协调优化调度需要大量的辅助信息,如新能源出力波动大小、电网线路输送能力、负荷削减电量的范围、实时电价等,其中每个因素又受很多条件的影响,因此是一个非常复杂的电力交易过程,此时必须利用大数据技术发掘数据内部之间的联系,从而制定出最佳调度方案。智能电网和传统电网最大的区别在于源网荷三者之间信息流动的双向性,三者之间信息在一个框架内可以顺畅的进行交互,极大地提升电网运行的经济性、可靠性。
3、网架发展规划
中投顾问发布的《“十三五”数据中国建设下智能电网产业投资分析及前景预测报告》指出,电网已经从传统电网发展到智能电网,随之将会成为能源互联网的一部分,从而使得电网与整个能源网联系的更为紧密。电转气技术的提出,为新能源接入提供了新的思路,试图将不宜存储的电能转化为便于存储的天然气,但由于转化效率较低,尚属于技术论证阶段。冷热气三联技术实现了能源的阶梯利用,能源利用效率高、环境污染小、经济效益好。电动汽车的兴起将会显著提高能源末端电力消费的占比,充换电站将会像加油站一样分布在城市的每个角落。传统的电网规划数据来源渠道不足,数据分析挖掘能力欠缺,因此造成规划过程中面临着众多不确定性因素的现象,特别是现在新技术不断涌现,能源结构不断发生变革,使得传统的电网规划方法往往与实际需求差别较大。电网规划的过程中,需要利用大数据技术综合考虑多种因素如分布式能源的接入、电动汽车的增长趋势、电力市场环境下为用户提供个性化用电服务等,多类型、海量数据的引入,可以有效减少电网规划过程中的不确定性,使得整个规划的过程更加合理、有序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28