京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何应对大数据安全问题
这是明确的大数据时代,但它不一定是保证大数据安全的时代。有些大型企业的数据库遭到了可怕的大规模破坏,包括家得宝、塔吉特、NiemenMarcus,以及最近的阿什利麦迪逊公司。大多数大数据的收集器做得远远不够,不能保障自己宝贵的信息不被窥视。如果没有从消费者到生产商,再到供应商的安全协议的重大变化,大数据成为恶意黑客的目标的吸引力增加。
不幸的是,有一些阻止数据采集器最大充分保护他们的数据的问题。然而,针对这些问题的解决方案可以确保未来大数据的长期案例-只要你和其他人制定他们。
主要的大数据安全挑战
传统的安全机制,如防火墙和防病毒软件目前安装在你的计算机上,但却不足以保障大数据。问题是,这些措施是为了保护小规模、静态信息的文件,你有许多保存在你的硬盘的信息,而不是来自云计算的百万兆字节信息。相反,对于大数据的安全必须是灵活的和快速的,允许快速流和多个入口。
专家在与云安全联盟的成员(一个确定改善云安全非营利性组织)的对话中发现了一些现代企业使用大数据的方式的弱点,这些措施包括:
·安全计算的分布式编程框架。执行多个计算阶段的程序必须有多重保护:一个用于程序,一个保护程序中的数据。
·非关系数据存储的安全性。也被称为NoSQL,非关系型存储的不断进化,当他们这样做,适当的安全必须随着它们一起发展成熟。
·安全数据存储。在过去,当数据在层间移动时,IT管理人员可以直接控制,但对于大数据,很难进行直接控制。而自动分层需要额外的安全机制。
·端点输入验证。当一个系统接收到数以百万计的输入数据时,作为大数据收集通常是这样做的,必须确保每一个输入数据是可信的和有效的。
·实时安全监控。到目前为止,实时的安全在查明真正的安全威胁方面并不是优秀的,而每天都在产生数以千计的假信息。
·数据挖掘和保护隐私的分析。大数据离真实隐私的数据只有一步之遥,因为它可以不经过消费者的意识或同意,编辑强烈的私人信息。
·加密访问控制和安全通信。为了全面安全,数据必须加密终端到终端的数据,但它也必须是有效的,并提供给需要它的那些人。
·细粒度访问控制。不是所有的数据都是同样要保密,企业应该能够过滤他们的安全,尽可能多地分享,同时保持最敏感的信息安全。
·可扩展的审计。要学习违反安全性,必须有详细的审核可供审查;然而,由于大数据的大小规模,这些报告也必须是可扩展到这一事件。
·数据源。数据源的出处复杂性继续在增长,但分析的源图表已经满足计算能力的要求。
提高大数据安全有效性的建议
云计算专家认为,对大数据安全的改进,最明智的指南是已经有几十年的历史的杀毒软件行业。杀毒软件公司应对各种不同的威胁有很多的经验。有无数的杀毒软件商都在为此努力,并都尝试过保护数据免受讨厌的数字错误的渗透。
然而,云计算专家最看重杀毒行业的是其对数据的开放性。而不是锁定了他们的安全机密,获得对竞争对手的优势,反病毒厂商(包括非政府组织,公共机构,甚至是民营企业)都会自由地沟通交流威胁的数据。行业领导者可以一同抵制新的和危险的恶意软件,并保证无处不在的电脑安全。这种开放的沟通和缺乏破坏性竞争的正是大数据需要快速高效地构建强大的安全性所需要的。
目前,像云安全联盟组织正在试图为云保护进行合作,但目前还没有产生足够的信任,在行业创造真正的进步。你应该支持这些组织和团队的努力,以确保大数据获得强大的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02