京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据审计护航现代金融体系构建
近日,审计署印发了《“十三五”国家审计工作发展规划》(下称《规划》)。这是第一个全国性的国家审计工作五年规划。
根据规划,审计部门将依法对金融监管部门、金融机构、金融市场开展全方位、多层次审计监督,推动建立安全高效的现代金融体系。
其中值得注意的是,《规划》强调要“适应新常态、践行新理念”。适应新常态,可以说是审计工作与时俱进的一个亮点所在,而大数据技术无疑成为审计创新的强劲驱动力。
业内专家普遍认为,在大数据时代当中,加快推进审计信息化建设,是适应信息科技高速发展的必然选择,也是提升审计监督能力的重要途径。
大数据推动审计信息化
在当前大数据背景下,互联网技术的快速发展催生了网络中各种可信任官方数据的呈现,促使计算机审计将进入大数据时代,大数据下的计算机审计必将带来审计技术和方法的革新,也将出现新的特点。面对新的任务和要求,审计部门更需要勇于创新,创新审计方式方法,注重运用信息化、大数据等现代科技手段提高审计效率。
这一点在地方审计工作中得到了充分体现。湖南省审计厅金融审计处处长李作尧对记者说:“我们试图不断创新审计方法,着力加强金融审计业务和计算机业务的融合,对被审计单位的数据进行深度分析整理,建立各种审计分析模型,逐步形成依托信息化技术的审计方法体系。”为此,他们结合金融审计的特点,站在现代审计的新高度和最前沿,在审计实际工作中不断创新方法,积极运用大数据理念,提高审计效率。
眼下,很多综合性现代服务企业也将信息化审计摆在重要位置。
供职于天职国际会计师事务所质监与技术支持部的王蕾预计,大数据时代将给审计工作带来变化,很有可能彻底改变传统审计工具。“当前,数据的收集来源从被审计对象内部扩展到与其相关的全部外部数据,从仅针对选取的样本转为全面覆盖,与此同时,数据分析模式的多样化和可视化以及数据导入及预处理的智能化,都会给审计工作提出新的要求。”王蕾表示。
在业内人士看来,大数据工具的深入运用将显著提高审计工作的效率和质量,使得审计人员从现场繁重的资料的收集和整理工作中解放出来,将时间和精力转移到构建分析模型和职业判断上去,能够为被审计单位提供更多、更有价值的预警和建议。
因此,做好应对随大数据时代而来的挑战和机遇,从政府审计到社会审计行业,加大对“大数据”的人、财、物的投入就显得尤为必要。
审计队伍还是根本保障
信息化技术诚然重要,但在整个审计工作中,人的因素尤其是审计队伍是否具备足够强的专业胜任能力,仍然是非常关键的因素。除了需要持续提高各级审计人员的常规经验、知识、专业等之外,更需要顺应大数据时代的新要求,提升审计人员的专业素质和创新能力。
这其中,审计信息化要求审计人员的知识结构有更大的深度和广度。信息化条件下审计人员需要掌握更丰富的审计专业知识、信息技术知识和常规知识。需要强调的是,审计人员所掌握的专业知识不能停留在书本、准则与制度上,要融会贯通,灵活应变,能够应用职业判断分析和解决非常规问题。
王蕾告诉记者:“我们事务所一直以来高度重视打造高层次审计信息化人才队伍,努力提升审计人员适应信息化、运用大数据的能力素质,现在更是已经明确要求加大信息化人才培养力度。”只有审计队伍的专业力量得到保证,才能更好地保证其审计工作的质量。“我们最关心的是基于尽职调查的审计,包括财务、法律、业务和团队,引入第三方专业审计机构有利于客观评价企业的价值和风险,尽可能减少人为干预可能导致的偏差也消除可能的寻租空间。”香颂资本董事沈萌表示。
恒昌合规中心审计部高级经理乔靖说,“我们都要配备经验丰富、符合胜任能力要求的审计人员,必须拥有履行职责所需的知识、技能和能力,坚持客观求实,实事求是地揭示、分析和反映问题,定期开展内部培训,相互交流项目经验。”“审计作为一种第三方审核方式,在我国经济深化改革、转型升级并建设制度化、规范化的现代市场经济体系过程中,担负着更加重要的作用。《规划》的出台有利于进一步提升公众对审计工作的清晰认识,也有助于推动我国市场经济诚信体系的基础完善。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27