京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据审计护航现代金融体系构建
近日,审计署印发了《“十三五”国家审计工作发展规划》(下称《规划》)。这是第一个全国性的国家审计工作五年规划。
根据规划,审计部门将依法对金融监管部门、金融机构、金融市场开展全方位、多层次审计监督,推动建立安全高效的现代金融体系。
其中值得注意的是,《规划》强调要“适应新常态、践行新理念”。适应新常态,可以说是审计工作与时俱进的一个亮点所在,而大数据技术无疑成为审计创新的强劲驱动力。
业内专家普遍认为,在大数据时代当中,加快推进审计信息化建设,是适应信息科技高速发展的必然选择,也是提升审计监督能力的重要途径。
大数据推动审计信息化
在当前大数据背景下,互联网技术的快速发展催生了网络中各种可信任官方数据的呈现,促使计算机审计将进入大数据时代,大数据下的计算机审计必将带来审计技术和方法的革新,也将出现新的特点。面对新的任务和要求,审计部门更需要勇于创新,创新审计方式方法,注重运用信息化、大数据等现代科技手段提高审计效率。
这一点在地方审计工作中得到了充分体现。湖南省审计厅金融审计处处长李作尧对记者说:“我们试图不断创新审计方法,着力加强金融审计业务和计算机业务的融合,对被审计单位的数据进行深度分析整理,建立各种审计分析模型,逐步形成依托信息化技术的审计方法体系。”为此,他们结合金融审计的特点,站在现代审计的新高度和最前沿,在审计实际工作中不断创新方法,积极运用大数据理念,提高审计效率。
眼下,很多综合性现代服务企业也将信息化审计摆在重要位置。
供职于天职国际会计师事务所质监与技术支持部的王蕾预计,大数据时代将给审计工作带来变化,很有可能彻底改变传统审计工具。“当前,数据的收集来源从被审计对象内部扩展到与其相关的全部外部数据,从仅针对选取的样本转为全面覆盖,与此同时,数据分析模式的多样化和可视化以及数据导入及预处理的智能化,都会给审计工作提出新的要求。”王蕾表示。
在业内人士看来,大数据工具的深入运用将显著提高审计工作的效率和质量,使得审计人员从现场繁重的资料的收集和整理工作中解放出来,将时间和精力转移到构建分析模型和职业判断上去,能够为被审计单位提供更多、更有价值的预警和建议。
因此,做好应对随大数据时代而来的挑战和机遇,从政府审计到社会审计行业,加大对“大数据”的人、财、物的投入就显得尤为必要。
审计队伍还是根本保障
信息化技术诚然重要,但在整个审计工作中,人的因素尤其是审计队伍是否具备足够强的专业胜任能力,仍然是非常关键的因素。除了需要持续提高各级审计人员的常规经验、知识、专业等之外,更需要顺应大数据时代的新要求,提升审计人员的专业素质和创新能力。
这其中,审计信息化要求审计人员的知识结构有更大的深度和广度。信息化条件下审计人员需要掌握更丰富的审计专业知识、信息技术知识和常规知识。需要强调的是,审计人员所掌握的专业知识不能停留在书本、准则与制度上,要融会贯通,灵活应变,能够应用职业判断分析和解决非常规问题。
王蕾告诉记者:“我们事务所一直以来高度重视打造高层次审计信息化人才队伍,努力提升审计人员适应信息化、运用大数据的能力素质,现在更是已经明确要求加大信息化人才培养力度。”只有审计队伍的专业力量得到保证,才能更好地保证其审计工作的质量。“我们最关心的是基于尽职调查的审计,包括财务、法律、业务和团队,引入第三方专业审计机构有利于客观评价企业的价值和风险,尽可能减少人为干预可能导致的偏差也消除可能的寻租空间。”香颂资本董事沈萌表示。
恒昌合规中心审计部高级经理乔靖说,“我们都要配备经验丰富、符合胜任能力要求的审计人员,必须拥有履行职责所需的知识、技能和能力,坚持客观求实,实事求是地揭示、分析和反映问题,定期开展内部培训,相互交流项目经验。”“审计作为一种第三方审核方式,在我国经济深化改革、转型升级并建设制度化、规范化的现代市场经济体系过程中,担负着更加重要的作用。《规划》的出台有利于进一步提升公众对审计工作的清晰认识,也有助于推动我国市场经济诚信体系的基础完善。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12