京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据共享和大数据思维挖掘应用系统市场的新商机
随着新经济环境和新商业规则的产生,应用系统用户的业务运作环境和需求也发生了巨大的变化,以前的应用系统产品关注的是企业用户本身内部的业务数据,而现在随着新商业规则的建立,企业的管理范围扩大了,需要协同的业务以及整合的资源也更多了,这就使得数据交互和共享的需求越发的强烈,应用系统厂商如果能变换角度,注重数据共享、业务协同和大数据的创新思维,就可以挖掘出应用系统市场的新商机
企业用户之间的业务需求是一环扣一环的,上下游企业用户在业务链上所产生和交互的业务数据也自然而然的形成了数据链,甲用户的采购订单也许就是乙用户的销售订单;甲用户的发货单的很多信息,乙用户可以作为收货单的输入;甲用户的应付,会对应乙用户的应收,等等等等,现在的企业用户,业务关系的复杂正度已经远远不是单个供应链那么简单了,错综复杂的业务关系更像是供应链网,有巨量的归属不同企业然而又是相互关联的业务数据在供应链网内不停的流动。可是,现在的状况是各个企业用户只是各自维护自己的应用系统,由于业务系统需要在供应链网内交互的业务数据信息不得不在自己的应用系统里多次重复输入,更谈不上供应链网上的业务数据信息共享。这种铁路警察各管一段的业务数据管理方式,既增加了业务数据处理费用,更降低了运作效率。
其实很早以前就有简单的信息共享,比如EDI,但是很多年过去了,好像应用系统之间的信息共享依然是原地踏步,并没有什么显著的变化,也几乎看不到应用系统厂商在这个领域有相关的新产品。即使是同一家应用系统厂商,其产品之间也不能直接实现业务数据的交互和共享,一般都是需要在实施阶段临时开发接口才能实现。不同的应用系统厂商之间的业务数据的交互和共享,更是要费尽周折才能开发调试出来。
应用系统厂商可以从企业用户之间的供应链网着手来分析数据链,为企业用户提供业务数据交互和共享的产品,应用系统厂商首先可以从自身的产品入手,规范产品间业务数据交互和共享标准,研发出数据交互和共享的产品,进而不同应用系统厂商之间共同打造跨厂商产品的业务数据交互和共享规则和标准,为构建全供应链网数据链数据交互和共享创造条件。这不啻又是应用系统厂商的一个新商机,也能真正为企业用户带来更多的便利。
如果能够建立基于供应链网数据链的数据交互和共享机制,那接下来的基于数据链的大数据分析和共享就有了大显身手的可能。一旦应用系统厂商与众多的企业用户达成共识,将业务大数据脱敏,既保护了业务数据的安全,又能保持脱敏大数据与业务的关联,进而可以从不同业务角度进行处理分析,机器学习、深度学习和垂直化的行业特性挖掘之类的应用也不会再面对巧妇难为无米之炊的窘境了。用户就能获得全新视角的业务和行业分析成果。
将企业用户从简单的数据提供者,变成又是提供者,又是分享者,为他们提供大数据的共享和增值服务,他们的参与度自然会大大提高。企业用户也能利用大数据分析的协助,不仅仅是从内部业务数据和自身客户数据,更能从上下游和行业业务以及客户的角度,来整合资源,提高管理和决策效率。进一步满足企业用户的管理和决策需求,提高市场竞争力。
应用系统厂商的众多合作伙伴积累的大数据也是不能忽视的,应用系统厂商如果能够跳出产品层面合作的理念,以大数据合作的新思路来构建合作伙伴生态圈,用大数据分析和增值服务共同为企业客户提供更完善的服务,对应用系统厂商的众多合作伙伴又是一个双赢的局面。
如果能变换角度,从用数据共享和大数据思维的角度去规划产品,做好顶层设计,就能使得应用系统产品的立意更高,整体框架更完善,更贴合新的商业规则,使企业用户协同和共享的业务运作效率更高。数据链应用也能实现数据产生-数据处理-价值提取-数据消费-新数据生产的良性循环。
当然,可能还有更多的角度去寻找应用系统产品的新商机,这里的看法也只是抛砖引玉,希望能有更多基于数据共享和大数据的应用系统新产品问世,引导企业用户享受业务协同和大数据带来的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12