京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据共享和大数据思维挖掘应用系统市场的新商机
随着新经济环境和新商业规则的产生,应用系统用户的业务运作环境和需求也发生了巨大的变化,以前的应用系统产品关注的是企业用户本身内部的业务数据,而现在随着新商业规则的建立,企业的管理范围扩大了,需要协同的业务以及整合的资源也更多了,这就使得数据交互和共享的需求越发的强烈,应用系统厂商如果能变换角度,注重数据共享、业务协同和大数据的创新思维,就可以挖掘出应用系统市场的新商机
企业用户之间的业务需求是一环扣一环的,上下游企业用户在业务链上所产生和交互的业务数据也自然而然的形成了数据链,甲用户的采购订单也许就是乙用户的销售订单;甲用户的发货单的很多信息,乙用户可以作为收货单的输入;甲用户的应付,会对应乙用户的应收,等等等等,现在的企业用户,业务关系的复杂正度已经远远不是单个供应链那么简单了,错综复杂的业务关系更像是供应链网,有巨量的归属不同企业然而又是相互关联的业务数据在供应链网内不停的流动。可是,现在的状况是各个企业用户只是各自维护自己的应用系统,由于业务系统需要在供应链网内交互的业务数据信息不得不在自己的应用系统里多次重复输入,更谈不上供应链网上的业务数据信息共享。这种铁路警察各管一段的业务数据管理方式,既增加了业务数据处理费用,更降低了运作效率。
其实很早以前就有简单的信息共享,比如EDI,但是很多年过去了,好像应用系统之间的信息共享依然是原地踏步,并没有什么显著的变化,也几乎看不到应用系统厂商在这个领域有相关的新产品。即使是同一家应用系统厂商,其产品之间也不能直接实现业务数据的交互和共享,一般都是需要在实施阶段临时开发接口才能实现。不同的应用系统厂商之间的业务数据的交互和共享,更是要费尽周折才能开发调试出来。
应用系统厂商可以从企业用户之间的供应链网着手来分析数据链,为企业用户提供业务数据交互和共享的产品,应用系统厂商首先可以从自身的产品入手,规范产品间业务数据交互和共享标准,研发出数据交互和共享的产品,进而不同应用系统厂商之间共同打造跨厂商产品的业务数据交互和共享规则和标准,为构建全供应链网数据链数据交互和共享创造条件。这不啻又是应用系统厂商的一个新商机,也能真正为企业用户带来更多的便利。
如果能够建立基于供应链网数据链的数据交互和共享机制,那接下来的基于数据链的大数据分析和共享就有了大显身手的可能。一旦应用系统厂商与众多的企业用户达成共识,将业务大数据脱敏,既保护了业务数据的安全,又能保持脱敏大数据与业务的关联,进而可以从不同业务角度进行处理分析,机器学习、深度学习和垂直化的行业特性挖掘之类的应用也不会再面对巧妇难为无米之炊的窘境了。用户就能获得全新视角的业务和行业分析成果。
将企业用户从简单的数据提供者,变成又是提供者,又是分享者,为他们提供大数据的共享和增值服务,他们的参与度自然会大大提高。企业用户也能利用大数据分析的协助,不仅仅是从内部业务数据和自身客户数据,更能从上下游和行业业务以及客户的角度,来整合资源,提高管理和决策效率。进一步满足企业用户的管理和决策需求,提高市场竞争力。
应用系统厂商的众多合作伙伴积累的大数据也是不能忽视的,应用系统厂商如果能够跳出产品层面合作的理念,以大数据合作的新思路来构建合作伙伴生态圈,用大数据分析和增值服务共同为企业客户提供更完善的服务,对应用系统厂商的众多合作伙伴又是一个双赢的局面。
如果能变换角度,从用数据共享和大数据思维的角度去规划产品,做好顶层设计,就能使得应用系统产品的立意更高,整体框架更完善,更贴合新的商业规则,使企业用户协同和共享的业务运作效率更高。数据链应用也能实现数据产生-数据处理-价值提取-数据消费-新数据生产的良性循环。
当然,可能还有更多的角度去寻找应用系统产品的新商机,这里的看法也只是抛砖引玉,希望能有更多基于数据共享和大数据的应用系统新产品问世,引导企业用户享受业务协同和大数据带来的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27