京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据拦路,智能联网设备面临四大难题
据国外媒体报道,上周拉斯维加斯举行的CES大展的主题便是物联网以及组成物联网的各种智能设备。每个参展商都能拿出某种号称最智能的新鲜玩意。但是这些智能设备真的智能吗?大数据和物联网一体两面。物联网收集来自各种智能设备的数据,这些数据需要被进行分类、重组并产生合理的决定。然后物联网利用终端智能设备来实施这些决定。这才是真正的智能化。
目前,随着智能设备的快速增长,在缺乏应用背景以及用户群的情况下,智能联网设备面临四大数据难题,阻碍了智能化的发展。虽然智能联网设备所面临的数据问题显而意见,但似乎很少有人想要真正讨论这些问题。
问题一:功能过于单一,没人会穿戴50种设备
CES大展上,VentureBeat网站的哈里森·韦伯在身上使用了56种可穿戴设备。如今的物联网科技创业者已经早就在前辈身上吸取了失败的教训,那就是任何产品使用起来一定要简单。因此,一种设备能把一件事真正做好就已经成功了。但是在未来智能设备爆发的情况下,衡量睡眠、进食速度或膝关节健康的设备都要分开穿戴的话,显然不太现实。
没有人愿意像哈里森·韦伯那样管理和穿戴50种智能设备。要不然你看起来就会是一名智能设备推销员。今天的智能设备创业公司正在用大量的单一解决方案来帮助简化人们的生活。为了实现简单易用的目标,这些公司过于集中在一个单一的问题上。CES走廊充斥着的智能瑜伽垫、智能阳光强度感应器、智能癫痫探测器、智能滑雪板等产品,让人变得无所适从。
问题二:获得传感器数据不是目的
就拿上文提到的阳光强度感应器来说。你真的需要一个腕带来感知当下的阳光强度吗?是不是可以使用智能手机来查询目前的光照强度,以确定是否应该出门。而不是出门后使用某种智能设备定期测量光照水平。前者的预判才是真正的智能,读取传感器数据谈不上什么智能设备,只是手段而已。
智能联网设备崛起后,会有大批的相关公司倒闭。只有少数的企业才能生存下来。这些幸存者将是那些能够发现更多数据背后信息,由此做出预判的设备。这意味着大量的数据挖掘能力。
早期版本的Jawbone的可穿戴健身设备,都要求配戴者手动登录他们的活动内容。而最近的版本则变成将正在进行的活动与已知活动模式进行比较,来对活动内容进行猜测。这就是从简单的数据读取,到真正智能化的最好例证。
问题三:数据无法共享
智能设备的崛起意味着传感器数据的几何增长。除非你是大型可穿戴设厂商-比如Jawbone、Fitbit、Withings等,否则可能无法收集足够的用户数据来获得用户生活的突破性发现。这使得大厂商有很强的先发优势。
当可穿戴设备厂商不可避免地被整合,所有倒闭公司收集的数据将会消失。目前,不同品牌可穿戴设备之间几乎没有任何数据共享。
人们不愿意从苹果切换到Android的最大原因就是操作的熟悉度和iTunes中的数据。同样地,在物联网的世界,数据的排他性阻止了用户在不同的设备之间切换。这也是为什么每个智能设备提供商都试图成为我们健康、家庭或财务的中心节点。
就像三星CEO在他的CES主题演讲中说的那样,“人们都希望为物联网创建一个单一的操作系统,但有这些想法的人目前都只关注自己的产品。”
如果数据不能改变你的行为,那搜集起来还有什么用呢?CES上有一款应用叫做V1bes,自称是“心灵应用程序”。它可以测量压力水平和大脑活动。
这一应用听起来很有用。但是知道压力水平,只是搜集到数据的表象,产生这种压力水平的原因无从得知。也许这些数据可以告诉用户压力水平过高,但是它并没有告诉用户可以引发慢性抑郁的压力来自哪里。
另一家叫做Narrative Clip的公司做的可能好的多。这家公司的产品每30秒就会拍摄一张照片来记录用户的生活,利用该公司的独特算法来决定哪些东西需要进一步分析,这种产品可能会让用户找到触发压力的线索。
不过,这次的CES有一点很明确,那就是智能联网设备市场不久的将来一定会爆发。我们正处在各种想法的漩涡之中,但很多都会胎死腹中。这些想法要么过于单一,要么无法对我们的生活产生任何帮助。智能终端、物联网和互联网大数据就是支撑这一市场的桩脚,忽略任何一环都无法支撑起一个有效的市场。目前智能终端和物联网无论从技术上还是实际应用上都日趋成熟,但是在智能化背后起核心作用的大数据却被有意无意的忽略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27