京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据四要素“预警、预测、决策、智能”
当我们提到大数据的要素特征,往往会想到从大数据概念诞生之日起就开始流传的4V理论,即海量、价值、快速、丰富。随着大数据的迅速发展,当拥有足够体量的数据后,人们发现,如果数据之间没有交互性,无法实现互联互通,即便是获取再丰富的数据也无法实现超越数据本身之外的价值。
九次方大数据创始人王叁寿提出,大数据的四要素是预警、预测、决策、智能。四点要素从功能的角度诠释了大数据的核心。王叁寿认为,最终实现这些功能还需要回归到大数据应用,唯有通过应用才能让大数据真正“着陆”。这一观点在全国如火如荼推动大数据产业发展之际,值得决策者去思考与深挖。
王叁寿解释,预警即通过数据采集、数据挖掘、数据分析,对已经存在的风险发出预报与警示,如通过数据分析发现某煤炭企业存在安全隐患;预测是指立足于纵向时间轴,对相对长时间内某些问题的判断从而形成指导,如根据气象数据预测农作物种植情况;决策是指通过所有相关数据的联动,形成基于数据和分析之上的决策或结论,例如,通过交管局与扶贫办数据的联动可以形成“谁是伪扶贫对象”的结论;智能,即当我们基于对现实问题的分析与判断,通过技术手段实现智能化的行为,例如,电商平台上一些恶意刷单和恶意注册的情况,通过数据分析与判断,就可以生成智能拦截。
王叁寿提出的大数据四要素,已经脱离数据本身的特点,让其从应用角度出发来实现价值。换句话说,大数据不是静态地存在,而是与周边数据发生碰撞和聚核。在某种程度上,大数据可以变成政府或企业的洞察力与行动力。这就形成大数据正确的表现形式:以往我们谈到的智慧交通管理系统、金融精准营销系统、旅游服务系统等,更多地是指向某一功能或作用,而大数据应该带给我们的不仅仅是停留在基于信息化上的某种功能之上,而是形成一个完整的决策系统,能够指导各个功能根据不同场景做出相应的正确回应。
举例来说,以往对安全生产监测会停留在对事故的统计与处理结论统计上,但通过大数据应用平台,可以将危险源、隐患、事故等的数据全部联动起来。对一个企业是否存在潜在危险的判断,不再是事故后的数据统计,而是通过监测企业外围数据,发现潜在风险。例如以周边人口密度、建筑物情况等数据来模拟最大损害情况,同时联动周边可调动的资源,如医疗情况、救护车等来实施救援。一方面,大数据可以发现安全隐患,尽早采取行动;另一方面,一旦企业出现安全事故,大数据能够形成整体的智能解决方案,实现对事故快速处置。
应用思维,就是大数据思维
虽然目前大数据被看做是基础性资源和重要生产力,但如何实现其应有的价值,仍在摸索当中。当前,各地纷纷兴建大数据中心。大数据中心实现了基础数据资源的存储、分类、整理,使得数据资源进入规模化时代。然而,如果以此为目标发展大数据相当于走入误区。“海量数据”、“大规模数据”等大数据中心提出的概念只着眼于数据规模本身,未能充分反映数据爆发时代下的数据处理与应用需求。
王叁寿认为,发展大数据产业,无论是基于技术开发、产品研发还是大数据公司的商业模式,仍然需要以“预警、预测、决策、智能”的大数据思维来落实数据应用,实现数据价值。事实上,这也正是大数据的应用思维,如果大数据不能实现这四大功能要素,价值迸发将会受到约束。
目前,王叁寿带领九次方大数据开发出了4000多个政府大数据应用场景,而这些应用场景已经成功让大数据在政府治理与政务管理领域落地,并建设了相应的大数据产品平台。
王叁寿将这个时代定义为“大数据应用的时代”,大数据的核心价值,正是需要通过基于在对事实数据累计的基础上,通过大数据采集、挖掘、分析等工具实现对当前形势或问题的科学预判以及对未来形势的科学预警,从而更科学、更智能地做出决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27