京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据对工业发展的推动意义
工业4.0时代自动化的到来。在数字工厂的生产模式下,工艺设计由计算机辅助数字仿真与优化完成,代替长久以来的手工方式,形成精确可靠的设计结果;在控制层,MES系统实现对生产状态的实时掌控,快速处理制造过程中物料短缺、设备故障、人员缺勤等各种异常情形,记录每个产品的关键技术数据,大大增强了产品的可追溯性。在执行层,各种工业机器人、移动机器人和智能设备将代替人工进行生产,显着提高生产精确度和产品质量稳定性。
与智能制造不谋而合,数字工厂为智能制造提供基础条件。数字工厂从数据的采集开始,通过信息技术手段对数据进行存储、加工、分析和呈现,从而反馈到生产中。
智能制造是一种由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程的各个环节都体现出了人工智能特性,例如生产过程自适应调整、工艺自主规划以及智能故障诊断。而专家系统作为人工智能最活跃的分支之一,将在未来的智能制造领域发挥巨大的作用,它从制造业领域专家中提取出宝贵的经验知识,并模拟专家的思维方式来对制造过程进行推理分析,例如具有联想记忆特性的案例推理、具有模糊不确定性的模糊推理。专家系统将在未来的智能制造领域形成大规模的分布式知识库共享平台,并基于更加丰富化的推理方式来进行智能制造决策,这将会扩大或延伸人类专家在智能制造中的脑力活动,进而将智能制造提升到一种更加柔性化、智能化以及集成化的高度。
数字生产:让过程透明化
数字工厂要落到实处,就必须从大数据采集及应用管理系统开始,融合专家系统等智慧方案,实现整体的工厂仿真与管理。
在生产管理方面,运用先进的生产管理技术,积极响应市场需求,提高生产组织效率,缩短生产准备时间,合理安排生产要素,保证产品加工均衡生产和加工过程的稳定,提高精细管理、精益制造、柔性生产的水平。设备管理充分利用信息化技术,对设备单机运行、维修、消耗、产出等全过程实行分析评价。
在质量控制方面需要有效采用先进的质量控制技术和方法,全面控制制造过程,实现质量工艺参数化、过程化。在物耗控制方面,通过信息技术,实现成本控制即时化、精细化管理,使原料、辅料、半成品、在制品、产品再生产以及物流等各环节得到有效追踪,不断降低产品制造过程的消耗、优化制造成本。
通过对工厂级、车间级计划调度,配方与工艺过程管理、质量控制与管理、设备运行过程管理、实时库存管理、生产任务与物料追踪、生产过程监控,以及制丝车间、卷包车间的一体化管理,使计划、生产、调度、资源分配更加科学、准确,提高各部门各系统间协调指挥能力,保障生产的连续性、可控性,使生产过程数字化、透明化,实现资源调度优化、产品质量全过程分析与跟踪,实现生产设备与上层管理之间的集成、生产现场生产数据资源的统一管理、使用和分析,达到对整个生产执行过程进行有效安排、调度、控制、优化和过程改进,推动生产管理的科学化。
数字化工厂-大数据的应用
基于云平台构建的制造企业的大数据的意义-数网星
产品营销:大数据分析结果为制造企业提供针对性推销、定向研发、智能维保等服务。
设备远程故障诊断分析:大数据预测设备未来可能出现故障的时间,提供避免风险的解决方案,消除设备故障停机给客户带来的损失。
客户体验:在移动端建立企业宣传平台,以场景化方式让客户参与产品的认知,增加品牌的传播效果。
技术创新:借助平台的专家经验共享、智能决策库的建立,提高运维领域的装备管理水平,降低行业运营成本。
节约效能:通过数据集的切分和规律查找,帮助找到最优化的数据集,实现人员投入及控制过程的节能提效。
数网星运用超大数据处理能力实现对设备的远程诊断维护、远程监控、远程诊断和故障报警,帮助企业提高生产效率,降低成本,把握现在,预知未来的大数据采集及应用管理平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12